Journal of Sustainable Metallurgy

, Volume 5, Issue 1, pp 107–117 | Cite as

Recycling of NdFeB Magnets by Electrodischarge Sintering—Microstructure, Magnetic, and Mechanical Properties

  • Lennart LeichEmail author
  • Arne Röttger
  • Martin Krengel
  • Werner Theisen
Research Article


In this work, we investigate the feasibility of recycling NdFeB magnets by means of electrodischarge sintering (EDS). We crushed, sintered, and hot-deformed NdFeB magnets in a jaw crusher, and the NdFeB fragments were further compacted to a round shape by EDS. The EDS technique is a fast and energy-saving compaction process for powders with sufficient electrical conductivity. The current is discharged from capacitors into a loose powder that has been precompacted by Cu punches into a ceramic die, thus resulting in fully dense magnets. In this study, we investigated the apparent density, particle size distribution, oxygen content, and morphology of the crushed powder. In addition, the microstructure, compressive strength, and the magnetic properties of the EDS-densified samples were examined. For all specimens, the energy product decreases with the increasing discharge energy during EDS processing and the increasing oxygen content of the initial powder. Furthermore, high apparent densities together with large particle sizes promote EDS densification of NdFeB magnets. The applied EDS parameters led to the formation of three different microstructures (insufficiently densified zone, fully densified zone, and remelted zone) along the cross section of the EDS-densified specimens. These volume fractions of the different microstructural constituents during the EDS process and the powder characteristics (oxygen content, morphology, etc.) determine the resulting mechanical and magnetic properties of the specimens.



The authors gratefully acknowledge the financial support from the BMWi (Bundesministerium für Wirtschaft und Energie)—under Grant No. 03ET1293A—within the project “Entwicklung eines Verfahrens zum Heißpressen von Magneten für energieeffiziente Pumpen (HeMag).” The authors also thank their project partners WILO SE, MKM-Engineering, and HUSS Maschinenbau for their support with the specimens and the supply of the EDS tools.


  1. 1.
    Croat JJ (2017) Rapidly solidified neodymium-iron-boron permanent magnets. Woodhead Publishing, SawstonGoogle Scholar
  2. 2.
    Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman and Hall, LondonCrossRefGoogle Scholar
  3. 3.
    Herbst JF, Croat JJ (1991) Neodymium-iron-boron permanent magnets. J Magn Magn Mater 100(1–3):57–78CrossRefGoogle Scholar
  4. 4.
    Yang Y, Walton A, Sheridan R et al (2017) REE recovery from end-of-life NdFeB permanent magnet scrap: a critical review. J Sustain Metall 3(1):122–149CrossRefGoogle Scholar
  5. 5.
    Rademaker JH, Kleijn R, Yang Y (2013) Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Environ Sci Technol 47(18):10129–10136CrossRefGoogle Scholar
  6. 6.
    Moss RL, Tzimas E, Kara H et al (2011) Critical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies. Publications Office, LuxembourgGoogle Scholar
  7. 7.
    Schüler D, Buchert M, Liu R et al (2011) Study on rare earths and their recycling. Accessed 1 Jan 2011
  8. 8.
    Binnemans K, Jones PT, Blanpain B et al (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRefGoogle Scholar
  9. 9.
    Takeda O, Okabe TH (2014) Current status on resource and recycling technology for rare earths. Metall Mater Trans E 1(2):160–173Google Scholar
  10. 10.
    Zakotnik M, Harris IR, Williams AJ (2008) Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process. J Alloys Compd 450(1–2):525–531CrossRefGoogle Scholar
  11. 11.
    Itoh M, Miura K, Machida K-I (2009) Novel rare earth recovery process on Nd–Fe–B magnet scrap by selective chlorination using NH4Cl. J Alloys Compd 477(1–2):484–487CrossRefGoogle Scholar
  12. 12.
    Okabe TH, Takeda O, Fukuda K et al (2003) Direct extraction and recovery of neodymium metal from magnet scrap. Mater Trans 44(4):798–801CrossRefGoogle Scholar
  13. 13.
    Lyman JW, Palmer GR (1993) Recycling of rare earths and iron from NdFeB magnet scrap. High Temp Mater Processes (Lond) 11:1–4CrossRefGoogle Scholar
  14. 14.
    Saito T, Sato H, Ozawa S et al (2003) The extraction of Nd from waste Nd–Fe–B alloys by the glass slag method. J Alloys Compd 353(1–2):189–193CrossRefGoogle Scholar
  15. 15.
    Schütte P, García J, Theisen W (2009) Electro discharge sintering as a process for rapid compaction in PM-technology. In Proceedings of the Euro international powder metallurgy congress and exhibition, Euro PM 2009, vol 3Google Scholar
  16. 16.
    Guillon O, Gonzalez-Julian J, Dargatz B et al (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16(7):830–849CrossRefGoogle Scholar
  17. 17.
    Leich L, Röttger A, Theisen W et al (2018) Densification of nanocrystalline NdFeB magnets processed by electro-discharge sintering—microstructure, magnetic, and mechanical properties. J Magn Magn Mater 460:454–460CrossRefGoogle Scholar
  18. 18.
    Schütte P (2012) Aufbau einer Kurzzeitsinteranlage zur Herstellung verschleißbeständiger Verbundwerkstoffe, Dissertation, Ruhr-Universität BochumGoogle Scholar
  19. 19.
    Withey PA, Kennett HM, Bowen P et al (1990) The magnetic and mechanical properties of NdFeB type permanent magnets and the effect of quenching. IEEE Trans Magn 26(5):2619–2621CrossRefGoogle Scholar
  20. 20.
    Barin I, Sauert F (1989) Thermochemical data of pure substances. VCH, WeinheimGoogle Scholar
  21. 21.
    Gao J, Volkmann T, Roth S et al (2001) Phase formation in undercooled NdFeB alloy droplets. J Magn Magn Mater 234:313–319CrossRefGoogle Scholar
  22. 22.
    Gao J, Volkmann T, Herlach D (2000) A metastable phase crystallized from undercooled NdFeCoZrGaB alloy droplets. J Alloys Compd 308(1–2):296–300CrossRefGoogle Scholar
  23. 23.
    Gao J, Wei B (1999) Containerless solidification of undercooled NdFeZrB alloy droplets in a drop tube. J Alloys Compd 285(1–2):229–232CrossRefGoogle Scholar
  24. 24.
    Sagawa M, Fujimura S, Togawa N et al (1984) New material for permanent magnets on a base of Nd and Fe (invited). J Appl Phys 55(6):2083–2087CrossRefGoogle Scholar
  25. 25.
    Yazid MM, Olsen SH, Atkinson GJ (2016) MFM study of a sintered Nd–Fe–B magnet: analyzing domain structure and measuring defect size in 3-D view. IEEE Trans Magn 52(6):1–10CrossRefGoogle Scholar
  26. 26.
    Makita K, Yamashita O (1999) Phase boundary structure in Nd–Fe–B sintered magnets. Appl Phys Lett 74(14):2056–2058CrossRefGoogle Scholar
  27. 27.
    Zhou GF, Fu SY, Sun XK et al (1990) Influence of annealing on the magnetic properties and microstructure of Nd-Fe-B based magnets. Phys Status Solidi (A) 121(1):257–264CrossRefGoogle Scholar
  28. 28.
    Schneider G, Henig E-T, Petzow G et al (1986) Phase relations in the system Fe-Nd-B. Z Met 77:775Google Scholar
  29. 29.
    Eckert D, Hinz D, Handstein A et al (1987) Thermal ageing and coercivity of sintered NdFeB magnets. Phys Status Solidi (A) 101(2):563–566CrossRefGoogle Scholar
  30. 30.
    Chang WC, Chin TS, Liu KS (1989) The dissolution kinetics of free iron in Nd-Fe-B permanent magnet alloys. J Magn Magn Mater 80(2–3):352–358CrossRefGoogle Scholar
  31. 31.
    Scott DW, Ma BM, Liang YL et al (1996) Microstructural control of NdFeB cast ingots for achieving 50 MGOe sintered magnets. J Appl Phys 79(8):4830CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Ruhr-Universität Bochum, Institut für Werkstoffe, Lehrstuhl WerkstofftechnikBochumGermany
  2. 2.Wilo SEDortmundGermany

Personalised recommendations