Advertisement

The Rare Earth Elements Potential of Greek Bauxite Active Mines in the Light of a Sustainable REE Demand

  • Platon N. Gamaletsos
  • Athanasios Godelitsas
  • Anestis Filippidis
  • Yiannis Pontikes
Research Article
  • 56 Downloads

Abstract

More recent data of Greek bauxites from the Parnassos-Ghiona active mines prove that rare earth elements (REEs) occur mainly in the form of authigenic/diagenetic LREE3+ carbonate and phosphate minerals (bastnäsite/parisite group and florencite). Bulk geochemistry of representative samples, from underground mines and open pits, showed an increased content in LREE (ΣLREE—from La to Gd—varying between 106 and 913 ppm; avg. ΣLREE = 321 ppm; n = 17), and lower HREE (ΣHREE—from Tb to Lu including Y—varying between 45 and 179 ppm; avg. ΣHREE = 95; n = 17). The overall REE concentration (ΣREE + Y+Sc) varies from 192 to 1109 ppm (avg. 463 ppm; n = 17). The most abundant REE is Ce (min: 67 ppm; max: 655 ppm; avg. 193 ppm; n = 17), exhibiting in general a positive geochemical anomaly (avg. Ce/Ce* -CeA-: 2.6), identical to the case of marine Fe–Mn-crust and terrestrial desert vanish, implying also that Ce4+ may exist either in REE-oxides and/or epigenetically sorbed in Fe-oxides. On the other hand, Nd content, which is more interesting for the industry, is lower (avg. 41 ppm; n = 17). The concentration of REEs is much higher in Fe-rich (red) bauxite, compared to Fe-depleted (white) bauxite (avg. ΣREE + Y+Sc = 569 ppm and 268 ppm, respectively). The new data presented herein show a rather lower REE potential of Parnassos-Ghiona bauxites, compared to previous literature, but similar values compared to karst-type bauxites of the globe. Although their REE concentration is higher compared to that of various geochemical reference materials (i.e., positive REE geochemical anomalies in comparison with chondrites, UCC, PAAS, NASC, and ES), it is vitally lower compared to REE resources being mined, such as REE–Fe–Nb–Th deposits. A trend similar to REE geochemical trend also stands for most of the trace elements that are present in Greek bauxites—mainly HFSE—except for LILE. Besides, Greek bauxite metallurgical residue’s (red mud) REE content seems to be remarkably increased by almost two times compared to that of the Parnassos-Ghiona bauxite parent material. Scandium is another critical element. In the studied bauxites, it varies from 29 to 73 ppm (avg. 47 ppm; n = 17); it is typical for the Mediterranean and EU bauxites and laterites, but much lower compared to the exploitable Australian laterites. The Fe-rich samples contain higher concentrations of Sc compared to Fe-depleted (avg. 54 and 33 ppm, respectively). This means that common red Greek bauxite is rather more exploitable, with regard to Sc (and the rest REE), but not the white one (which is of high quality in terms of Al). Bulk geochemistry indicates that Sc is correlated to Fe but not to Zr, while microscale observations demonstrated the presence of fine-grained scandian-zircons. This is in line with a very recent study proving that Sc is mainly present in Fe-oxide minerals (mainly hematite and goethite) and zircons. Bulk geochemical Fe–Pb and Fe–As positive correlations are also verified among the associated trace elements. Finally, the investigation of the REE vertical distribution in a characteristic deposit of the B3 horizon (i.e., Pera Lakkos mine case study), showed that the REE concentration is increased in the Fe-rich domain (lying above the footwall limestone), as well as in the coal layer interstratified between the Fe-depleted domain and the hanging wall limestone. However, it is revealed that the Ce/Ce* (CeA) is increased in the coal layer and is raised to the uppermost Fe-depleted domain, but not the lowermost Fe-rich bauxite domain. This might be attributed to the Ce3+ ↔ Ce4+ and the LREE re-mobilization during the supergene/epigenetic processes.

Keywords

Rare earth elements Scandium Bauxite Bauxite residue Red mud 

Notes

Acknowledgements

We are grateful to “Aluminium of Greece S.A.,” and its subsidiary “Delphi-Distomon S.A.,” as well as “S&B Industrial Minerals S.A.” (which has been recently consolidated by “Imerys S.A.”), and “ELMIN Hellenic Mining Enterprises S.A.” (whose the bauxite division has been acquired by “Imerys S.A.”) for supplying bauxite samples from the Parnassos-Ghiona mines. The “Ajkai Timföldgyár” alumina plant (“MAL Magyar Alumínium Zrt”) is duly acknowledged for the provision of bauxite samples from Hungarian, Bosnian, and Montenegrin active mines following György Bárdossy’s personal communication. Many thanks are offered to Dr. J. Göttlicher and Dr. R. Steininger (ANKA Synchrotron Facility/KIT, Germany) for provision of beamtime at the SUL-X beamline and collaboration, as well as to Dr. B. Schulz-Dobrick (retired, Johannes Gutenberg University/Mainz, Germany) for collaboration during XRF chemical analysis. We would like to thank our colleague Ms. B. Wenzell (Center for Electron Nanoscopy – Technical University of Denmark/CEN-DTU) for assistance in SEM–EDS/SEM–WDS measurements. Partial funding of this research leading to these results has been received from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement No. 609405 (COFUNDPostdocDTU). Finally, this article is respectfully dedicated to our memorable colleague György Bárdossy†. Academician György Bárdossy was a Hungarian geologist-geochemist whose pioneer study contributed to the geochemical investigation mainly of karst-type bauxites, laterite formation, and occurrence worldwide. In 1991, he became a member of the Croatian Academy of Sciences; in 1993, he was elected to the Hungarian Academy of Sciences (HAS) correspondent, and in 1998 he became a full member (HAS). In 2009, he became a member of the International Association of Mathematical Geology, and an honorary citizen of HAS. In 2012, he received the Academic Gold Medal of HAS.

Compliance with Ethical Standards

Conflict of interest

The authors state that there is no conflict of interest.

Supplementary material

40831_2018_192_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3710 kb)

References

  1. 1.
    Arndt NT, Fontboté L, Hedenquist JW, Kesler SE, Thompson JFH, Wood DG (2017) Future global mineral resources. Geochem Perspect 6(1):1–171CrossRefGoogle Scholar
  2. 2.
    Chakhmouradian AR, Smith MP, Kynicky J (2015) From “strategic” tungsten to “green” neodymium: a century of critical metals at a glance. Ore Geol Rev 64:455–458CrossRefGoogle Scholar
  3. 3.
    Wall F, Rollat A, Pell RS (2017) Responsible sourcing of critical metals. Elements 13:313–318CrossRefGoogle Scholar
  4. 4.
    Mathieux F, Ardente F, Bobba S, Nuss P, Blengini G, Alves Dias P, Blagoeva D, Torres De Matos C, Wittmer D, Pavel C, Hamor T, Saveyn H, Gawlik B, Orveillon G, Huygens D, Garbarino E, Tzimas E, Bouraoui F, Solar S (2017) Critical raw materials and the circular economy—background report. JRC Science-for-policy Report, EUR 28832 EN, Publications Office of the European Union, Luxembourg. ISBN: 978-92-79-74282-8.  https://doi.org/10.2760/378123JRC108710
  5. 5.
    Binnemans K, Jones PT (2015) Rare earths and the balance problem. J Sustain Metall 1:29–38CrossRefGoogle Scholar
  6. 6.
    Binnemans K, Jones PT, Müller T, Yurramendi L (2018) Rare earths and the balance problem. J Sustain Metall 4:126–146CrossRefGoogle Scholar
  7. 7.
    British Geological Survey (2015) Supply risk list for chemical elements or element groups, which are of economic value. www.bgs.ac.uk/downloads/start.cfm?id=3075
  8. 8.
    Hatch GP (2012) Dynamics in the global market for rare earths. Elements 8:341–346CrossRefGoogle Scholar
  9. 9.
    Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Min. Engineer 41:97–114CrossRefGoogle Scholar
  10. 10.
    Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloys Compd 408–412:1339–1343CrossRefGoogle Scholar
  11. 11.
    Ling M-X, Liu Y-L, Williams IS, Teng F-Z, Yang X-Y, Ding X, Wei G-J, Xie L-H, Deng W-F, Sun W-D (2013) Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Sci Rep 3(1776):1–8Google Scholar
  12. 12.
    Smith MP, Moore K, Kavecsánszki D, Finch AA, Kynicky J, Wall F (2016) From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. Geochem Front 7:315–334Google Scholar
  13. 13.
    Steenfelt A, Kolb J, Thrane K (2016) Metallogeny of South Greenland: a review of geological evolution, mineral occurrences and geochemical exploration data. Ore Geol Rev 77:194–245CrossRefGoogle Scholar
  14. 14.
    Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2013) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535–539CrossRefGoogle Scholar
  15. 15.
    Takaya Y, Yasukawa K, Kawasaki T, Fujinaga K, Ohta J, Usui Y, Nakamura K, Kimura J-I, Chang Q, Hamada M, Dodbiba G, Nozaki T, Iijima K, Morisawa T, Kuwahara T, Ishida Y, Ichimura T, Kitazume M, Fujita T, Kato Y (2018) The tremendous potential of deep sea mud as a source of rare-earth elements. Sci Rep 8(5763):1–8Google Scholar
  16. 16.
    Mancheri NA (2015) World trade in rare earths, Chinese export restrictions, and implications. Resour Policy 46:262–271CrossRefGoogle Scholar
  17. 17.
    Deady EA, Mouchos E, Goodenouch K, Willianson BJ, Wall F (2016) A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona. Greece. Min Mag 80(1):43–61CrossRefGoogle Scholar
  18. 18.
    Goodenough KM, Schilling J, Jonsson E, Kalvig P, Charles N, Tuduri J, Deady EA, Sadeghi M, Schiellerup H, Müller A, Bertrand G, Arvanitidis N, Eliopoulos DG, Shaw RA, Thrane K, Keulen N (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856CrossRefGoogle Scholar
  19. 19.
    Mongelli G, Boni M, Oggiano G, Mameli P, Sinisi R, Buccione R, Mondillo N (2017) Critical metals distribution in Tethyan karst bauxite: the cretaceous Italian ores. Ore Geol Rev 86:526–536CrossRefGoogle Scholar
  20. 20.
    Radusinović S, Jelenković R, Pačevski A, Simić V, Božović D, Holclajtner-Antunović I, Životić D (2017) Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro). Ore Geol Rev 80:406–428CrossRefGoogle Scholar
  21. 21.
    U.S. Geological Survey (2018) Bauxite and alumina, statistics and information. http://minerals.usgs.gov/minerals/pubs/commodity/bauxite
  22. 22.
    Gamaletsos PN, Godelitsas A, Kasama T, Church NS, Douvalis AP, Göttlicher J, Steininger R, Boubnov A, Pontikes Y, Tzamos E, Bakas T, Filippidis A (2017) Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geol Rev 84:228–244CrossRefGoogle Scholar
  23. 23.
    Gamaletsos PN, Godelitsas A, Kasama T, Kuzmin A, Lagos M, Mertzimekis TJ, Göttlicher J, Steininger R, Xanthos S, Pontikes Y, Angelopoulos GN, Zarkadas C, Komelkov A, Tzamos E, Filippidis A (2016) The role of nano-perovskite in the negligible thorium release in seawater from Greek bauxite residue (red mud). Sci Rep 6(21737):1–13Google Scholar
  24. 24.
    Mouchos E, Wall F, Williamson BJ, Palumbo-Roe B (2016) Easily leachable rare earth element phases in the Parnassos-Ghiona bauxite deposits, Greece. Bull Geol Soc Greece 50(4):1952–1958CrossRefGoogle Scholar
  25. 25.
    Gamaletsos P (2014) Mineralogy and geochemistry of bauxites from Parnassos-Ghiona mines and the impact on the origin of the deposits. Unpublished PhD thesis. National and Kapodistrian University of Athens, Athens, pp 1–361. http://hdl.handle.net/10442/hedi/42199
  26. 26.
    Gamaletsos P, Godelitsas A, Mertzimekis TJ, Göttlicher J, Steininger R, Xanthos S, Berndt J, Klemme S, Kuzmin A, Bárdossy G (2011) Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques. Nucl Instrum Methods Phys Res B 269:3067–3073CrossRefGoogle Scholar
  27. 27.
    Laskou M, Andreou G (2003) Rare earth element distribution and REE-minerals from the Parnassos-Ghiona bauxite deposits, Greece. In: Eliopoulos D et al (eds) Mineral exploration and sustainable development: proceedings of the 7th biennial SGA-SEG meeting 2003, Athens, Greece, 24–28 August 2003. Millpress, Rotterdam, The Netherlands, pp 89–92. ISBN: 90-77017-77-1Google Scholar
  28. 28.
    Mouchos E, Wall F, Williamson B (2017) High-Ce REE minerals in the Parnassus-Giona bauxite deposits, Greece. Appl Earth Sci 126:82–83CrossRefGoogle Scholar
  29. 29.
    Ochsenkühn-Petropoulou M, Ochsenkühn KM (1995) Rare earth minerals found in Greek Bauxites by SEM and EPMA. Eur Microsc Anal 49:13–14Google Scholar
  30. 30.
    Papastavrou S, Perdikatsis V (1987) U-Th and REE concentrations in bauxites and new aspects about the origin of bauxites in the Iti-mountains (C. Greece). In: Janković S (ed) Mineral deposits of the Tethyan Eurasian Metallogenic Belt between the Alps and the Pamirs. UNESCO/IGCP Project No 169: Geotectonic Evolution and Metallogeny of Mediterranean and SW Asia Department of Mineral Exploration, Faculty of Mining and Geology, Belgrade University, Belgrade, pp 111–118Google Scholar
  31. 31.
    Vind J, Malfliet A, Blanpain B, Tsakiridis PE, Tkaczyk AH, Vassiliadou V, Panias D (2018) Rare earth element phases in bauxite residue. Minerals 8(77):1–32Google Scholar
  32. 32.
    Vind J, Malfliet A, Bonomi C, Paiste P, Sajó IE, Blanpain B, Tkaczyk AH, Vassiliadou V, Panias D (2018) Rare earth element phases in bauxite residue. Miner Eng 123:35–38CrossRefGoogle Scholar
  33. 33.
    Arp T (1985) Geologische Kartierung des Gebietes um Tithronion im Kallidromongebirge, Mittelgriechenland und petrographische Bearbeitung des Karstbauxites (b1). Unpublished PhD thesis. University of Hamburg, Hamburg, pp 1–213Google Scholar
  34. 34.
    Biermann M (1983) Zur mineralogie, geochemie und genese des karstbauxites (B3 – horizont) an der Grenze Unter-Oberkreide in Mittelgriechenland: Unpublished PhD thesis. University of Hamburg, Hamburg, pp 1–134Google Scholar
  35. 35.
    Eliopoulos DG, Economou-Eliopoulos M (2010) Arsenic distribution in laterite deposits of the Balkan Peninsula. In: Proceedings of XIX congress of the Carpathian Balkan Geological Association, Greece, 23–26 September 2010, vol 100. Scientific Annals, School of Geology, Aristotle University of Thessaloniki, pp 325–332Google Scholar
  36. 36.
    Laskou M (1991) Concentrations of rare earths in Greek bauxites. Acta Geol Hung 34:395–404Google Scholar
  37. 37.
    Laskou M (2001) Chromite in karst bauxites, bauxitic laterites and bauxitic clays of Greece. In: Piestrzyński A et al (eds) Mineral deposits at the beginning of the 21st century, Proceedings of the 6th Biennial SGA-SEG Meeting 2001, Krakow, Poland, 26–29 August 2001. Swets & Zeitlingen Publishers, Lisse, pp 1091–1094. ISBN: 90-2651-846-3Google Scholar
  38. 38.
    Laskou M, Economou-Eliopoulos M (2007) The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J Geochem Explor 93:67–77CrossRefGoogle Scholar
  39. 39.
    Laskou M, Economou-Eliopoulos M (2013) Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance. Miner Petrol 107:471–486CrossRefGoogle Scholar
  40. 40.
    Laskou M, Economou-Eliopoulos M, Mitsis I (2011) Bauxite ore as an energy source for bacteria driving iron-leaching and bio-mineralization. Hell J Geosci 45:163–173Google Scholar
  41. 41.
    Maksimović Z, Papastamatiou J (1973) Distribution d’oligoélements dans les gisements de bauxite de la Grèce centrale. Symp. ICSOBA, Nice, pp 33–46Google Scholar
  42. 42.
    Ochsenkühn KM, Parissakis G (1977) Quantitative Untersuchungen von Bauxiten Zentralgriechenlands mittels Atomabosrptions-spectroscopie und Flemmenatomemission. Microchim Acta 1:447–457CrossRefGoogle Scholar
  43. 43.
    Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G (1995) Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta 315(1–2):231–237CrossRefGoogle Scholar
  44. 44.
    Ochsenkühn-Petropoulou M, Ochsenkühn KM, Luck J (1991) Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites. Spectrochim Acta 46:51–65CrossRefGoogle Scholar
  45. 45.
    Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G (1994) Direct determination of lanthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal Chim Acta 296(3):305–313CrossRefGoogle Scholar
  46. 46.
    Papassiopi N, Vaxevanidou K, Paspaliaris I (2010) Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores. Miner Eng 23:25–31CrossRefGoogle Scholar
  47. 47.
    Retzmann K (1986) Zur mineralogie, geochemie und genese des karstbauxites (B2-horizont) an der Grenze Jura/Kreide in Mittelgriechenland. Unpublished PhD thesis. University of Hamburg, Hamburg, pp 11–146Google Scholar
  48. 48.
    Marquis EA, Seidman DN, Dunand DC (2002) Creep of precipitation-strengthened Al(Sc) alloys. In: Mishra RS, Earthman JC, Raj SV (eds) Creep deformation: fundamentals and applications. TMS Annual Meeting, Seattle, Washington, 17–21 February 2002, pp 299–308Google Scholar
  49. 49.
    Bárdossy G (1982) Karst bauxites: bauxite deposits on carbonate rocks: Developments in Economic Geology 14. Elsevier, Amsterdam, pp 1–441Google Scholar
  50. 50.
    Valeton I (1972) Bauxites. Elsevier, Amsterdam, pp 1–226Google Scholar
  51. 51.
    Gamaletsos P, Godelitsas A, Dotsika E, Tzamos E, Göttlicher J, Filippidis A (2013) Geological sources of As in the environment of Greece: a review. In: Scozzari A, Dotsika E (eds) The volume “Threats to the quality of groundwater resources: prevention and control”. Springer’s review series “The handbook of environmental chemistry”, pp 77–113.  https://doi.org/10.1007/698_2013_230 Google Scholar
  52. 52.
    Kalaitzidis S, Siavalas G, Skarpelis N, Araujo CV, Christanis K (2010) Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona unit, Central Greece: coal characteristics and depositional environment. Int J Coal Geol 81:211–226CrossRefGoogle Scholar
  53. 53.
    Jarosewich E, Boatner LA (1991) Rare earth element reference samples for electron microprobe analyses. Geostand Newsl 15:397–399CrossRefGoogle Scholar
  54. 54.
    Özlü N (1983) Trace-element content of “karst bauxites” and their parent rocks in the Mediterranean belt. Miner Depos 18:469–476CrossRefGoogle Scholar
  55. 55.
    Boni M, Rollinson G, Mondillo N, Balassone G, Santoro L (2013) Quantitative mineralogical characterization of karst bauxite deposits in the southern Apennines, Italy. Econ Geol 108:813–833CrossRefGoogle Scholar
  56. 56.
    Buccione R, Mongelli G, Sinisi R, Boni M (2016) Relationship between geometric parameters and compositional data: a new approach to karst bauxites exploration. J Geochem Explor 169:192–201CrossRefGoogle Scholar
  57. 57.
    MacLean WH, Bonavia FF, Sanna G (1997) Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Miner Depos 32:607–616CrossRefGoogle Scholar
  58. 58.
    Mameli P, Mongelli G, Oggiano G, Dinelli E (2007) Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity. Int J Earth Sci (Geol Rundsch) 96:887–902CrossRefGoogle Scholar
  59. 59.
    Mondillo N, Balassone G, Boni M, Rollinson G (2011) Karst bauxites in the Campania Apennines (southern Italy): a new approach. Period Miner 80(3):407–432Google Scholar
  60. 60.
    Mongelli G (1997) Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chem Geol 140:69–76CrossRefGoogle Scholar
  61. 61.
    Mongelli G, Boni M, Buccione R, Sinisi R (2014) Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities. Ore Geol Rev 63:9–21CrossRefGoogle Scholar
  62. 62.
    Mongelli G, Buccione R, Sinisi P (2015) Genesis of autochthonous and allochthonous Apulian karst bauxites (Southern Italy): climate constraints. Sediment Geol 325:168–176CrossRefGoogle Scholar
  63. 63.
    Mongelli G, Buccione R, Gueguen E, Langone A, Sinisi R (2016) Geochemistry of the apulian allochthonous karst bauxite, Southern Italy: distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geol Rev 77:246–259CrossRefGoogle Scholar
  64. 64.
    Putzolu F, Papa AP, Mondillo N, Boni M, Balassone G, Mormone A (2018) Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals 8(298):1–24Google Scholar
  65. 65.
    Hanilçi N (2013) Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. J Geochem Explor 133:118–137CrossRefGoogle Scholar
  66. 66.
    Karadağ MM, Küpeli Ş, Arýk F, Ayhan A, Zedef V, Döyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya—southern Turkey). Chemie Erde 69:143–159CrossRefGoogle Scholar
  67. 67.
    Öztürk H, Hein JR, Hanilçi N (2002) Genesis of the Doğankuzu and Mortaş bauxite deposits, Taurides, Turkey: separation of Al, Fe, and Mn and implications for passive margin metallogeny. Econ Geol 97:1063–1077CrossRefGoogle Scholar
  68. 68.
    Papastamatiou J, Maksimovic Z (1970) Contribution to the study of genesis of Greek bauxites: chemical and mineralogical composition of Mandra II bauxite deposits. Ann Inst Geol Publ Hung 3:391–402Google Scholar
  69. 69.
    Kiskyras D (1960) Die mineralogische Zusammensetzung der griechischen Bauxite in Abhängigkeit von der Tektonik. J Mineral Geochem (Former: Neues Jahrb Mineral Abhandl) 94:662–680Google Scholar
  70. 70.
    Laskou M, Economou M (1991) Platinum group elements and gold concentrations in Greek bauxites. Geol Balcan 21:65–77Google Scholar
  71. 71.
    Gamaletsos P, Godelitsas A, Chatzitheodoridis E, Kostopoulos D (2007) Laser micro-Raman investigation of Greek bauxites from the Parnassos-Ghiona active mining area. Bull Geol Soc Greece 40:736–746CrossRefGoogle Scholar
  72. 72.
    Perdikatsis V (1992) Quantitative mineralogical analysis of bauxites by X-ray diffraction with the Rietveld method. Acta Geol Hung 35:447–457Google Scholar
  73. 73.
    Grice JD, Maisonneuve V, Leblanc M (2007) Natural and synthetic fluoride carbonates. Chem Rev 107:114–132CrossRefGoogle Scholar
  74. 74.
    Maksimović Z, Pantó G (1991) Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma 51:93–109CrossRefGoogle Scholar
  75. 75.
    Maksimović Z, Pantó G (1996) Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: Chemistry, origin and ore deposits. Chapman & Hill, London, pp 257–279Google Scholar
  76. 76.
    Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen É, Léone P (2002) Scandium mineralogy: pretulite with scandian zircon and zenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican massif, France. Can Mineral 40:1657–1673CrossRefGoogle Scholar
  77. 77.
    Breiter K, Förster H-J, Škoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system, Czech Republic. Lithos 88:15–34CrossRefGoogle Scholar
  78. 78.
    Gramaccioli CM, Diella V, Demartin F (2000) The formation of scandium minerals as an example of the role of complexes in the geochemistry of rare earths and HFS elements. Eur J Mineral 12:795–808CrossRefGoogle Scholar
  79. 79.
    Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, New York, pp 1–689.  https://doi.org/10.1007/978-1-4615-0215-9 CrossRefGoogle Scholar
  80. 80.
    Goldstein J, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2018) Scanning electron microscopy and X-ray microanalysis, 4th edn. Springer, New York, pp 1–550.  https://doi.org/10.1007/978-1-4939-6676-9 CrossRefGoogle Scholar
  81. 81.
    Chassé M, Griffin WL, O’Reilly SY, Calas G (2016) Scandium speciation in a world-class lateritic deposit. Geochem Perspect 3:105–114Google Scholar
  82. 82.
    Rudnick R, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier–Pergamon, Oxford, pp 1–64Google Scholar
  83. 83.
    Ostergren JD, Bargar JR, Brown GE Jr, Parks GA (1999) Combined EXAFS and FTIR investigation of sulfate and carbonate effects on Pb(ll) sorption to goethite (α-FeOOH). J Synchrotron Radiat 6:645–647CrossRefGoogle Scholar
  84. 84.
    O’Reilly SE, Hochella MF Jr (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67(23):4471–4487CrossRefGoogle Scholar
  85. 85.
    Valeton I, Biermann M, Reche R, Rosenberg F (1987) Genesis of nickel laterites and bauxites in Greece during the Jurassic and the Cretaceous and their relation to ultrabasic rocks. Ore Geol Rev 2:359–404CrossRefGoogle Scholar
  86. 86.
    Valeton I (1994) Element concentration and formation of ore deposits by weathering. CATENA 21:99–129CrossRefGoogle Scholar
  87. 87.
    Mudd GM, Jowitt SM, Werner TT (2017) The world’s by-product and critical metal resources part I: uncertainties, current reporting practices, implications and grounds for optimism. Ore Geol Rev 86:924–938CrossRefGoogle Scholar
  88. 88.
    Burke IT, Peacock CL, Lockwood CL, Stewart DI, Mortimer RJG, Ward MB, Renforth P, Gruiz K, Mayes WM (2013) Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ Sci Technol 47:6527–6535CrossRefGoogle Scholar
  89. 89.
    Abedini A, Calagari AA, Azizi MR (2018) The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: evidence from the Kanigorgeh deposit, NW Iran. J Geochem Explor 186:129–142CrossRefGoogle Scholar
  90. 90.
    Calagari AA, Abenini A (2007) Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. J Geochem Explor 94:1–18CrossRefGoogle Scholar
  91. 91.
    Khosravi M, Abedini A, Alipour S, Mongelli G (2017) The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: critical metals distribution and parental affinities. J Afr Earth Sci 129:960–972CrossRefGoogle Scholar
  92. 92.
    Ahmadnejad F, Zamanian H, Taghipour B, Zarasvandi A, Buccione R, Ellahi SS (2017) Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geol Rev 86:755–783CrossRefGoogle Scholar
  93. 93.
    Rafiei B, Mollai H, Ghorbani M (2008) The genesis of Late Triassic allochthonous karst-type bauxite deposits of the Kisejin area, Ab-e-Garm district, Iran. N Jb Geol Paläont Abh 250(2):217–231CrossRefGoogle Scholar
  94. 94.
    Zamanian H, Ahmadnejad F, Zarasvandi A (2016) Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Chem Erde Geochem 76:13–37CrossRefGoogle Scholar
  95. 95.
    Zarasvandi A, Charchi A, Carranza EJM, Alizadeh B (2008) Karst bauxite deposits in the Zagros Mountain Belt, Iran. Ore Geol Rev 34:521–532CrossRefGoogle Scholar
  96. 96.
    Esmaeily D, Rahimpour-Bonab H, Esna-Ashari A, Kananian A (2010) Petrography and geochemistry of the Jajarm karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis. Turk J Earth Sci 19:267–284Google Scholar
  97. 97.
    Zarasvandi A, Carranza EJM, Ellahi SS (2012) Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran. Ore Geol Rev 48:125–138CrossRefGoogle Scholar
  98. 98.
    Liu X, Wang Q, Deng J, Zhang Q, Sun S, Meng J (2010) Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. J Geochem Explor 105:137–152CrossRefGoogle Scholar
  99. 99.
    Liu X, Wang Q, Zhang Q, Zhang Y, Li Y (2016) Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geol Rev 75:100–115CrossRefGoogle Scholar
  100. 100.
    Wang Q, Deng J, Liu X, Zhang Q, Sun S, Jiang C, Zhou F (2010) Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J Asian Earth Sci 39:701–712CrossRefGoogle Scholar
  101. 101.
    Li Z, Din J, Liao C, Yin F, L Open image in new window T, Cheng L, Li J (2013) Discovery of the REE minerals in the Wulong-Nanchuan bauxite deposits, Chongqing, China: insights on conditions of formation and processes. J Geochem Explor 133:88–102CrossRefGoogle Scholar
  102. 102.
    Liu X, Wang Q, Feng Y, Li Z, Cai S (2013) Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geol Rev 55:162–185CrossRefGoogle Scholar
  103. 103.
    Wang Q, Liu X, Yan C, Cai S, Li Z, Wang Y, Zhao J, Li G (2012) Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region, SW Henan, China. Ore Geol Rev 48:258–270CrossRefGoogle Scholar
  104. 104.
    Ling K-Y, Zhu X-Q, Tang H-S, Wang Z-G, Yan H-W, Han T, Chen W-Y (2015) Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geol Rev 65:84–96CrossRefGoogle Scholar
  105. 105.
    Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482CrossRefGoogle Scholar
  106. 106.
    Boynton WV (1985) Cosmochemistry of the rare earth elements: Meteorite studies, In: Henderson P (ed) Rare earth element geochemistry. Developments in geochemistry, vol 2, Elsevier, Amsterdam, pp 115–152CrossRefGoogle Scholar
  107. 107.
    Haskin LA, Haskin MA, Frey FA, Wildman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Ahrens LH (ed) Origin and distribution of the elements, vol 1. Pergamon, Oxford, pp 889–911CrossRefGoogle Scholar
  108. 108.
    Haskin LA, Wildeman TR, Haskin MA (1968) An accurate procedure for the determination of the rare earths by neutron activation. J Radioanal Chem 1:337–348CrossRefGoogle Scholar
  109. 109.
    Haskin LA, Helmke PA, Paster TP, Allen RO (1971) Rare earths in meteoritic, terrestrial, and lunar matter. In: Brunfelt A, Steinnes E (eds) Activation analysis in geochemistry and cosmochemistry. Universitetsforlaget, Oslo, Proc. NATO Conf. on Activation Analysis in Geochemistry, pp 201–218Google Scholar
  110. 110.
    Korotev RL (1996) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand Newsl 20:217–245CrossRefGoogle Scholar
  111. 111.
    Korotev RL (1996) On the relationship between the Apollo 16 ancient regolith breccias and feldspathic fragmental breccias, and the composition of the prebasin crust in the Central Highlands of the Moon. Meteor Planet Sci 31:403–412CrossRefGoogle Scholar
  112. 112.
    Taylor SR, McClennan SM (1985) The continental crust: Its composition and evolution. Blackwell, Oxford, pp 1–312Google Scholar
  113. 113.
    Wakita H, Rey P, Schmitt RA (1971) Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil and core samples. In: Proceedings of the Apollo 11 lunar science conference, pp 1685–1717Google Scholar
  114. 114.
    Rollinson H (1993) Using geochemical data; evaluation, presentation, interpretation. Pearson Education Limited, Great Britain, pp 1–352. ISBN: 9-780582-067011Google Scholar
  115. 115.
    Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  116. 116.
    Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380CrossRefGoogle Scholar
  117. 117.
    Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212CrossRefGoogle Scholar
  118. 118.
    Laul JC (1979) Neutron activation analysis of geologic materials. At Energy Rev 17:603–695Google Scholar
  119. 119.
    Masuda A, Nakamura N, Tanaka T (1973) Fine structure of mutually normalized rare-earth patterns of chondrites. Geochim Cosmochim Acta 37:239–248CrossRefGoogle Scholar
  120. 120.
    McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  121. 121.
    Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775CrossRefGoogle Scholar
  122. 122.
    Palme H (1988) Chemical abundances in meteorites. In: Klare G (ed) Reviews in modern astronomy. Springer, Berlin, pp 28–51Google Scholar
  123. 123.
    Korotev RL (2010) “Rare Earth Plots” and the concentrations of rare earth elements (REE) in chondritic meteorites. http://meteorites.wustl.edu/goodstuff/ree-chon.htm. Accessed Feb 2010
  124. 124.
    Haskin MA, Haskin LA (1966) Rare earths in European shales: a redetermination. Science 154:507–509Google Scholar
  125. 125.
    McClennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, vol 21, Mineralogical Society of America, Washington, DC, pp 169–200Google Scholar
  126. 126.
    Aplin AC (1984) Rare earth element geochemistry of Central Pacific ferromanganese encrustations. Earth Planet Sci Lett 71:13–22CrossRefGoogle Scholar
  127. 127.
    De Carlo EH, McMurtry GM (1992) Rare earth element geochemistry of ferromanganese crusts from the Hawaiian archipelago, Central Pacific. Chem Geol 95:235–250CrossRefGoogle Scholar
  128. 128.
    Elderfield H, Graves MJ (1981) Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules. Earth Planet Sci Lett 55:163–170CrossRefGoogle Scholar
  129. 129.
    Hein JR, Koschinsky A, Bau M, Manheim FT, Kang JK, Roberts L (2000) Cobalt rich ferromanganese crusts in the Pacific. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press NY, Mar Sci Ser, pp 239–280Google Scholar
  130. 130.
    Rajani RP, Banakar VK, Parthiban G, Mudholkar AV, Chodankar AR (2005) Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. J Earth Syst Sci 114(1):51–61CrossRefGoogle Scholar
  131. 131.
    Wen X, De Carlo EH, Li YH (1997) Interelement relation-ship in ferromanganese crusts from the Central Pacific Ocean. Their implications for crust genesis. Mar Geol 136:277–297CrossRefGoogle Scholar
  132. 132.
    Ohta A, Ishii S, Sakakibara M, Mizuno A, Kawabe I (1999) Systematic correlation of the Ce anomaly with the Co/(Ni + Cu) ratio and Y fractionation from Ho in distinct types of Pacific deep-sea nodules. Geochem J 33:399–417CrossRefGoogle Scholar
  133. 133.
    Piper DZ (1974) Rare earth elements in ferromanganese nodules and other marine phases. Geochim Cosmochim Acta 38:1007–1022CrossRefGoogle Scholar
  134. 134.
    Thiagarajan N, Aeolus Lee C-T (2004) Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth Planet Sci Lett 224:131–141CrossRefGoogle Scholar
  135. 135.
    Boulangé B, Colin F (1994) Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passa Quatro, Minais Gerais, Brazil. Appl Geochem 9:701–711CrossRefGoogle Scholar
  136. 136.
    Zou H, McKeegan KD, Xu X, Zindler A (2004) Fe–Al-rich tridymite-hercynite xenoliths with positive cerium anomalies: preserved lateritic paleosols and implications for Miocene climate. Chem Geol 207:101–116CrossRefGoogle Scholar
  137. 137.
    Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8:347–353CrossRefGoogle Scholar
  138. 138.
    Mason B, Moore CB (1982) Principles of geochemistry. Wiley, New York, pp 1–344. ISBN: 0-471-57522-4Google Scholar
  139. 139.
    Krauskopf KB, Bird DK (1994) Introduction to geochemistry. McGraw-Hill International Editions, New York, pp 1–667. ISBN: 0-07-035820-6Google Scholar
  140. 140.
    German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833CrossRefGoogle Scholar
  141. 141.
    Li Y-H (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240CrossRefGoogle Scholar
  142. 142.
    Liu Y-G, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52:1361–1371CrossRefGoogle Scholar
  143. 143.
    Piepgras DJ, Jacobsen SB (1992) The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column. Geochim Cosmochim Acta 56:1851–1862CrossRefGoogle Scholar
  144. 144.
    Murphy K, Dymond J (1984) Rare earth elements fluxes and geochemical budget in the eastern equatorial Pacific. Nature 307:444–447CrossRefGoogle Scholar
  145. 145.
    Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646CrossRefGoogle Scholar
  146. 146.
    Hanchar JM, Van Wenstrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42CrossRefGoogle Scholar
  147. 147.
    Spathi A (1972) Distribution of trace elements in the bauxite bearing limestones of the Parnassos-Ghiona area. Bull Geol Soc Greece 9(2):177–205Google Scholar
  148. 148.
    Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol 99:65–82CrossRefGoogle Scholar
  149. 149.
    Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129CrossRefGoogle Scholar
  150. 150.
    Mazumdar A, Banerjee DM, Schidlowski M, Balaram V (1999) Rare-earth elements and Stable Isotope Geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chem Geol 156:275–297CrossRefGoogle Scholar
  151. 151.
    Skarpelis N, Perlikos P, Gale N, Gale-Stos S (1989) Rare earth elements and gold in lateritic derived sedimentary nickeliferous iron ores: the Marmeiko deposit, Beotia, continental Greece. Bull Geol Soc Greece 26:121–128Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Center for Electron NanoscopyTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of Geology and GeoenvironmentNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of GeologyAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Department of Materials EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations