Journal of Sustainable Metallurgy

, Volume 3, Issue 4, pp 711–719 | Cite as

Comparison of Methods for Electrochemical Iron Removal from Titanium Ores

  • Farzin Fatollahi-FardEmail author
  • Petrus Christiaan Pistorius
Thematic Section: Molten Slags, Fluxes, and Salts for Sustainable Processing
Part of the following topical collections:
  1. Molten Slags, Fluxes, and Salts for Sustainable Processing


Titanium metal production by the Kroll process requires a high-grade ore material as a feedstock for chlorination, such as natural or synthetic rutile. Electrochemical methods for making titanium have generally required even higher purity. This paper describes different methods for iron removal from a pseudorutile mineral sand for the eventual goal of producing commercially pure titanium powder by the MER electrochemical process. One method involves the dissolution of the Fe\(_2\)O\(_3\) content of the ore in an alkali chloride molten salt, followed by plating to remove the dissolved species as metallic iron. The other method described involves the reduction of the ore to titanium oxycarbide, which also reduces iron and some other metal oxides present to metallic form. This reduced material is used as an anode in an electrochemical cell, and the metallic impurities are selectively removed by careful control of the anode potential. The products of both processes are compared with respect to their impurity contents, and their potential applications to different titanium production methods are also examined.


Titanium oxycarbide MER process Pseudorutile Electrolysis Electrowinning 


  1. 1.
    Sibum H, Güther VG, Roidl O, Habashi F (2012) Titanium, titanium alloys, and titanium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Electronic Release, pp 51–82Google Scholar
  2. 2.
    Auer G, Woditsch P, Westerhaus A, Kischkewitz J, Griebler W-D, De Liedekerke M (2012) (2012) Pigments, inorganic, 2. White pigments. In: Ullmann’s encyclopedia of industrial chemistry, Electronic Release, pp 257–291Google Scholar
  3. 3.
    EHK Technologies (2004) Summary of emerging titanium cost reduction technologiesGoogle Scholar
  4. 4.
    Wainer E (1959) Cell feed material for the production of titanium. US Patent 2,868,703 A, 1959Google Scholar
  5. 5.
    Fray D (2013) Exploring novel uses of molten salts. ECS Trans. 50(11):3–13CrossRefGoogle Scholar
  6. 6.
    Fray DJ, Chen GZ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407(6802):361–364CrossRefGoogle Scholar
  7. 7.
    Withers JC, Loutfy RO (2011) Thermal and electrochemical process for metal production. US Patent 7,985,326 B2Google Scholar
  8. 8.
    Withers JC, Loutfy RO Thermal and electrochemical process for metal production. US Patent Application 10/828,6412001Google Scholar
  9. 9.
    Withers JC, Loutfy RO (2006) Thermal and electrochemical process for metal production. US Patent Application 11/294,872, 2006Google Scholar
  10. 10.
    Withers JC, Loutfy RO (2007) Thermal and electrochemical process for metal production. US Patent Application US 11/536,599, 2007Google Scholar
  11. 11.
    Withers JC, Loutfy RO, Laughlin JP (2007) Electrolytic process to produce titanium from TiO\(_2\) feed. Mater Technol 22(2):66–70CrossRefGoogle Scholar
  12. 12.
    Jiao S, Zhu H (2006) Novel metallurgical process for titanium production. J Mater Res 21(09):2172–2175CrossRefGoogle Scholar
  13. 13.
    Ning X, Du C, Wang Q, Jiao S, Zhu H (2010) Dissolution behavior of TiC\(_x\)O\(_{1-x}\) solid solutions in chloride melt. Electrochemistry 78(6):513–516CrossRefGoogle Scholar
  14. 14.
    Fray DJ, Jiao S (2015) Treatment of titanium ores. US Patent 9,181,604, 2015Google Scholar
  15. 15.
    Benson LL, Mellor I, Jackson M (2016) Direct reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloys. J Mater Sci 51(9):4250–4261CrossRefGoogle Scholar
  16. 16.
    Fatollahi-Fard F, Pistorius PC (2015) Production of titanium oxycarbide from titania-rich mineral sands. EPD Congress 2015, TMS, Warrendale; Wiley, Hoboken, pp 297–304CrossRefGoogle Scholar
  17. 17.
    Fatollahi-Fard F, Pistorius PC (2016) Production of titanium oxycarbide from iron-rich titanium ores. In: Proceedings of the 13th world conference on titanium, TMS, Warrendale; Wiley, Hoboken, pp 65–69Google Scholar
  18. 18.
    Adipuri A, Zhang G, Ostrovski O (2008) Chlorination of titanium oxycarbide produced by carbothermal reduction of rutile. Metall Mater Trans B 39(1):23–34CrossRefGoogle Scholar
  19. 19.
    Adipuri A, Li Y, Zhang G, Ostrovski O (2011) Chlorination of reduced ilmenite concentrates and synthetic rutile. Int J Miner Process 100(3–4):166–171CrossRefGoogle Scholar
  20. 20.
    Bale C, Bélisle E, Chartrand P, Decterov S, Eriksson G, Gheribi A, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton A, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende M-A (2016) FactSage thermochemical software and databases, 2010–2016. Calphad 54:35–53CrossRefGoogle Scholar
  21. 21.
    Burgess DR (2005) Thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
  22. 22.
    Stewart DF, Pollard LJ (1974) Process of Beneficiating titaniferous ores in the presence of hydrogen chloride. US Patent 3,854,929, 1974Google Scholar
  23. 23.
    Stewart DF, Pollard LJ (1974) Process for producing metallic iron concentrates and titanium oxide concentrates from titaniferous ores. US Patent 3,816,099, 1974Google Scholar
  24. 24.
    Pollard LJ, Stewart DF (1977) Beneficiation of the non-ferrous metal values of oxide-containing materials. US Patent 4,047,934, 1977Google Scholar
  25. 25.
    Fatollahi-Fard F, Pistorius PC (2016) Upgrading of iron-rich titanium minerals using a molten salt process. In: 7th international symposium on high-temperature metallurgical processing, TMS, Warrendale; Wiley, Hoboken, pp 19–26Google Scholar
  26. 26.
    Fatollahi-Fard F, Pistorius PC (2016) Electrochemical upgrading of iron-rich titanium ores. Advances in molten slags, fluxes, and salts. TMS, Warrendale; Wiley, Hoboken, pp 761–769Google Scholar
  27. 27.
    Grey IE, Watts JA (1994) Mineralogic nomenclature: pseudorutile revalidated and neotype given. Mineral Mag 58(393):597–600CrossRefGoogle Scholar
  28. 28.
    Janz GJ, Tomkins RPT, Allen CB, Downey JR, Garner GL, Krebs U, Singer SK (1975) Molten salts: volume 4, part 2, chlorides and mixtureselectrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 4(4):871CrossRefGoogle Scholar
  29. 29.
    Flengas SN, Ingraham TR (1957) Voltaic cells in fused salts: part I. The silver—silver chloride, cobalt—cobaltous chloride system. Can J Chem 35(10):1139–1149CrossRefGoogle Scholar
  30. 30.
    Guion J, Blander M, Hengstenberg D, Hagemark K (1968) Thermodynamic treatment and electromotive force measurements of the ternary molten salt systems silver chloride-sodium chloride-potassium chloride and silver chloride-sodium chloride-cesium chloride. J Phys Chem 72(6):2086–2095CrossRefGoogle Scholar
  31. 31.
    Kubaschewski O (1992) Fe-Si (iron-silicon). In: Campbell F (ed) ASM handbook: alloy phase diagrams, vol 3. ASM International, Russell Township, pp 2.194–2.207Google Scholar
  32. 32.
    Johnson V, Weiher J, Frederick C, Rogers D (1972) Magnetic and Mössbauer effect studies of Mn5Si3:Fe5Si3 solid solutions. J Solid State Chem 4(2):311–323CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations