Advertisement

Effect of Temperature on the Fracture Toughness of a NiTiHf High Temperature Shape Memory Alloy

  • B. Young
  • B. Haghgouyan
  • D. C. Lagoudas
  • I. KaramanEmail author
SMST2019
  • 19 Downloads

Abstract

The fracture toughness of Ni50.3Ti29.7Hf20 high temperature shape memory alloy was systematically investigated as a function of temperature. A set of nominally isothermal fracture toughness tests were conducted on disk-shaped compact tension specimens at five temperatures corresponding to three thermodynamical conditions: (i) below martensite finish temperature to obtain the fracture toughness of martensite (ii) above martensite start temperature in austenite but below the martensite desist temperature (Md, the temperature above which the austenite does not transform), in order to find the fracture toughness when stress induced martensitic (SIM) transformation takes place close to the crack tip, and (iii) above Md, in order to obtain the fracture toughness of austenite. The extent of the inelastic zone near the crack tip was detected using digital image correlation, and the fracture surfaces were examined. The fracture behavior was highly temperature/phase dependent. The fracture toughness of the transforming material was higher than that of austenite and martensite, i.e. SIM transformation acts as a toughening mechanism. This was attributed to the differences in strain hardening behavior in detwinning, martensitic transformation, and plastic deformation regimes of the stress–strain response, where SIM transformation occurs with the lowest strain hardening rate. The fracture toughness values obtained here are lower than those of equiatomic NiTi.

Keywords

Fracture toughness High temperature shape memory alloys NiTiHf Phase transformation 

Notes

Acknowledgements

This study was supported by the US Air Force Office of Scientific Research, under Grant No. FA9550-18–1-0276 and the National Science Foundation under Grant No. CMMI-1917367. B. Young acknowledges the support from the 2017 SMST Fellowship. The authors also acknowledge the NASA Glenn Research Center for providing the material used in this work. The authors acknowledge Dr. Baxevanis for the valuable discussions on the fracture toughness measurement method.

References

  1. 1.
    Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, BerlinGoogle Scholar
  2. 2.
    Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552CrossRefGoogle Scholar
  3. 3.
    Tobushi H, Kimura K, Iwanaga H, Cahoon JR (1990) Basic research on shape memory alloy heat engine (output power characteristics and problems in development). JSME Int J 33:263–268Google Scholar
  4. 4.
    Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRefGoogle Scholar
  5. 5.
    Umale T, Salas D, Tomes B, Arroyave R, Karaman I (2019) The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scr Mater 161:78–83CrossRefGoogle Scholar
  6. 6.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRefGoogle Scholar
  7. 7.
    Benafan O, Noebe RD, Padula SA, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni29.7-Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans A 43(12):4539–4552CrossRefGoogle Scholar
  8. 8.
    Saghaian SM, Karaca HE, Tobe H, Souri M, Noebe R, Chumlyakov YI (2015) Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater 87:128–141CrossRefGoogle Scholar
  9. 9.
    Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRefGoogle Scholar
  10. 10.
    Evirgen A (2014) Microstructural characterization and shape memory response of Ni-Rich NiTiHf and NiTiZr high temperature shape memory alloys. Doctoral Dissertation, Texas A&M UniversityGoogle Scholar
  11. 11.
    Belbasi M, Salehi MT (2014) Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy. J Mater Eng Perform 23(7):2368–2372CrossRefGoogle Scholar
  12. 12.
    Bigelow GS, Garg A, Padula SA, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr Mater 64(8):725–728CrossRefGoogle Scholar
  13. 13.
    Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-Phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr high-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92CrossRefGoogle Scholar
  14. 14.
    Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRefGoogle Scholar
  15. 15.
    Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater 83:48–60CrossRefGoogle Scholar
  16. 16.
    Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69(5):354–357CrossRefGoogle Scholar
  17. 17.
    Evirgen A, Basner F, Karaman I, Noebe RD, Pons J, Santamarta R (2012) Effect of aging on the martensitic transformation characteristics of a Ni-rich NiTiHf high temperature shape memory alloy. Funct Mater Lett 5(4):1250038CrossRefGoogle Scholar
  18. 18.
    Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRefGoogle Scholar
  19. 19.
    Saghaian SM, Karaca HE, Souri M, Turabi AS, Noebe RD (2010) Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater Des 101:340–345CrossRefGoogle Scholar
  20. 20.
    Shukla D, Noebe RD, Stebner AP (2013) Empirical study of the multiaxial, thermomechanical behavior of NiTiHf shape memory alloys, vol NASA/TM-20130216619. NASA, Cleveland, OHGoogle Scholar
  21. 21.
    Benafan O (2012) Deformation and phase transformation processes in polycrystalline NiTi and NiTiHf high temperature shape memory alloys. Doctoral Dissertation, University of Central FloridaGoogle Scholar
  22. 22.
    Hayrettin C (2017) Actuation fatigue and fracture of shape memory alloys. Doctoral Dissertation, Texas A&M UniversityGoogle Scholar
  23. 23.
    Karakoc O, Demblon A, Wheeler RW, Lagoudas DC, Karaman I (2019) Effects of testing parameters on the fatigue performance NiTiHf high temperature shape memory alloys. In: AIAA Scitech 2019 Forum, 2019, p 0416Google Scholar
  24. 24.
    Karakoc O, Hayrettin C, Canadinc D, Karaman I (2018) Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Mater 153:156–168CrossRefGoogle Scholar
  25. 25.
    Karakoc O, Hayrettin C, Evirgen A, Santamarta R, Canadinc D, Wheeler RW, Wang SJ, Lagoudas DC, Karaman I (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRefGoogle Scholar
  26. 26.
    Hayrettin C, Karakoc O, Karaman I, Mabe JH, Santamarta R, Pons J (2019) Two way shape memory effect in NiTiHf high temperature shape memory alloy tubes. Acta Mater 163:1–13CrossRefGoogle Scholar
  27. 27.
    Russell SM, Sczerzenie F (1994) Engineering considerations in the application of NiTiHf and NiAI as practical high-temperature shape memory alloys. MRS Proc 360:455CrossRefGoogle Scholar
  28. 28.
    Babacan N, Bilal M, Hayrettin C, Liu J, Benafan O, Karaman I (2018) Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Mater 157:228–244CrossRefGoogle Scholar
  29. 29.
    Kockar B, Karaman I, Kim JI, Chumlyakov Y (2006) A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr Mater 54(12):2203–2208CrossRefGoogle Scholar
  30. 30.
    Moholt M, Benafan O (2017) Spanwise Adaptive Wing. Presented at the 3rd Annual Convergent Aeronautics Solutions Showcase and Innovation Faire, VAGoogle Scholar
  31. 31.
    Holtz RL, Sadananda K, Imam MA (1999) Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature. Int J Fatigue 21:S137–S145CrossRefGoogle Scholar
  32. 32.
    Robertson SW, Ritchie RO (2007) In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709CrossRefGoogle Scholar
  33. 33.
    Daly S, Miller A, Ravichandran G, Bhattacharya K (2007) An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55(18):6322–6330CrossRefGoogle Scholar
  34. 34.
    Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57(4):1015–1025CrossRefGoogle Scholar
  35. 35.
    Ahadi A, Sun Q (2016) Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scr Mater 113:171–175CrossRefGoogle Scholar
  36. 36.
    Katanchi B, Choupani N, Khalil-Allafi J, Tavangar R, Baghani M (2018) Mixed-mode fracture of a superelastic NiTi alloy: experimental and numerical investigations. Eng Fract Mech 190:273–287CrossRefGoogle Scholar
  37. 37.
    Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–37CrossRefGoogle Scholar
  38. 38.
    Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue Fract Eng Mater Struct 36(9):903–912CrossRefGoogle Scholar
  39. 39.
    Melton KN, Mercier O (1981) The mechanical properties of NiTi-based shape memory alloys. Acta Metall 29(2):393–398CrossRefGoogle Scholar
  40. 40.
    Robertson SW, Ritchie RO (2008) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube. J Biomed Mater Res Part B 84B(1):26–33CrossRefGoogle Scholar
  41. 41.
    Luo J, He J, Wan X, Dong T, Cui Y, Xiong X (2016) Fracture properties of polycrystalline NiTi shape memory alloy. Mater Sci Eng A 653:122–128CrossRefGoogle Scholar
  42. 42.
    ASTM Standard E399 (2011) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. ASTM International, West Conshohocken, PAGoogle Scholar
  43. 43.
    Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRefGoogle Scholar
  44. 44.
    Baxevanis T, Lagoudas D (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175(2):151–166CrossRefGoogle Scholar
  45. 45.
    Falvo A, Furgiuele F, Leonardi A, Maletta C (2009) Stress-induced martensitic transformation in the crack tip region of a NiTi alloy. J Mater Eng Perform 18(5):679–685CrossRefGoogle Scholar
  46. 46.
    Haghgouyan B, Jape S, Baxevanis T, Karaman I, Lagoudas DC (2019) Stable crack growth in NiTi shape memory alloys: 3D finite element modeling and experimental validation. Smart Mater Struct 28(6):064001CrossRefGoogle Scholar
  47. 47.
    Haghgouyan B, Karaman I, Jape S, Solomou A, Lagoudas DC (2018) Crack growth behavior in NiTi shape memory alloys under mode-I isothermal loading: effect of stress state. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems: V002T02A013-V002T02A013Google Scholar
  48. 48.
    Jape S, Baxevanis T, Lagoudas DC (2016) Stable crack growth during thermal actuation of shape memory alloys. Shape Mem Superelast 2(1):104–113CrossRefGoogle Scholar
  49. 49.
    Sgambitterra E, Maletta C, Furgiuele F, Sehitoglu H (2018) Fatigue crack propagation in [0 1 2] NiTi single crystal alloy. Int J Fatigue 112:9–20CrossRefGoogle Scholar
  50. 50.
    Sgambitterra E, Maletta C, Magarò P, Renzo D, Furgiuele F, Sehitoglu H (2019) Effects of temperature on fatigue crack propagation in pseudoelastic NiTi shape memory alloys. Shape Memory SuperelastGoogle Scholar
  51. 51.
    Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–Towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRefGoogle Scholar
  52. 52.
    ASTM Standard E1820 (2014) Standard Test Method for Measurement of Fracture Toughness. ASTM International, West Conshohocken, PAGoogle Scholar
  53. 53.
    Haghgouyan B, Shafaghi N, Aydıner CC, Anlas G (2016) Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA. Smart Mater Struct 25(7):075010CrossRefGoogle Scholar
  54. 54.
    Maletta C, Sgambitterra E, Niccoli F (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6(1):17CrossRefGoogle Scholar
  55. 55.
    Haghgouyan B, Young B, Karaman I, Lagoudas DC (2019) Fracture toughness of martensitic NiTiHf high-temperature shape memory alloy. Behavior and Mechanics of Multifunctional Materials XIII. 10968:109680AGoogle Scholar
  56. 56.
    Amin-Ahmadi B, Noebe RD, Stebner AP (2019) Crack propagation mechanisms of an aged nickel-titanium-hafnium shape memory alloy. Scr Mater 159:85–88CrossRefGoogle Scholar
  57. 57.
    Chen Y, Tyc O, Molnárová O, Heller L, Šittner P (2019) Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges. Shape Mem Superelast 5(1):42–62CrossRefGoogle Scholar
  58. 58.
    Paul PP, Fortman M, Paranjape HM, Anderson PM, Stebner AP, Brinson LC (2018) Influence of structure and microstructure on deformation localization and crack growth in NiTi shape memory alloys. Shape Mem Superelast 4(2):285–293CrossRefGoogle Scholar
  59. 59.
    Santamarta R, Evirgen A, Perez-Sierra AM, Pons J, Cesari E, Karaman I, Noebe RD (2015) Effect of thermal treatments on Ni–Mn–Ga and Ni-Rich Ni–Ti–Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428CrossRefGoogle Scholar
  60. 60.
    Gall K, Yang N, Sehitoglu H, Chumlyakov YI (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109(2):189–207CrossRefGoogle Scholar
  61. 61.
    Robertson SW, Mehta A, Pelton AR, Ritchie RO (2007) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55(18):6198–6207CrossRefGoogle Scholar
  62. 62.
    Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61(19):7422–7431CrossRefGoogle Scholar
  63. 63.
    Benafan O, Garg A, Noebe RD, Bigelow GS, Padula SA, Gaydosh DJ, Schell N, Mabe JH, Vaidyanathan R (2014) Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy. Intermetallics 50:94–107CrossRefGoogle Scholar
  64. 64.
    Surikova NS, Chumlyakov YI (2000) Mechanisms of plastic deformation of the titanium nickelide single crystals. Phys Metals Metallogr 89(2):196–205Google Scholar
  65. 65.
    Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier HJ, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48(13):3311–3326CrossRefGoogle Scholar
  66. 66.
    Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I, Chumlyakov Y, Maier HJ (2003) Detwinning in NiTi alloys. Metall Mater Trans A 34(1):5–13CrossRefGoogle Scholar
  67. 67.
    Chumlyakov YI, Kireeva IV, Panchenko EY, Timofeeva EE, Pobedennaya ZV, Chusov SV, Karaman I, Maier H, Cesari E, Kirillov VA (2008) High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51(10):1016–1036CrossRefGoogle Scholar
  68. 68.
    Benafan O, Gaydosh DJ (2017) High temperature shape memory alloy Ni50.3Ti29.7Hf20 torque tube actuators. Smart Mater Struct 26(9):095002CrossRefGoogle Scholar
  69. 69.
    Benafan O, Gaydosh DJ (2018) Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes. Smart Mater Struct 27(7):075035CrossRefGoogle Scholar
  70. 70.
    Makkar J, Baxevanis T (2019) Notes on the experimental measurement of fracture toughness of shape memory alloys. J Intell Mater Syst Struct 1-9Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • B. Young
    • 1
  • B. Haghgouyan
    • 1
  • D. C. Lagoudas
    • 1
    • 2
  • I. Karaman
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations