Advertisement

Fabrication and Characterization of Freestanding NiTi Based Thin Film Materials for Shape Memory Micro-actuator Applications

  • Christoph BechtoldEmail author
  • Christoph Chluba
  • Christiane Zamponi
  • Eckhard Quandt
  • Rodrigo Lima de Miranda
SMST19
  • 11 Downloads

Abstract

Thin film shape memory actuators fabricated by micro-system technology processes are of particular interest in micro-actuator applications due to their high work output, large displacements, and a comparably easy and compact system setup. Micro-system technology processes allow to deposit and structure ultra-precise parts from a wide range of alloys, among them alloys that are difficult to process with conventional fabrication techniques. However, sputtered NiTi based thin films are seldom deposited with thicknesses > 10 µm, which limits their range of application as well as makes the handling of freestanding films difficult. In this work, freestanding NiTi, NiTiCu, and NiTiHf shape memory structures were fabricated by means of sputtering, lithography, and wet etching, with a process that allows for thicknesses up to 80 µm. Their high cycle actuation behavior and microstructure were characterized. NiTiCu actuators show an excellent cyclic stability, resulting in high fatigue lives of > 108 cycles at 1.5% strain, even for stresses as high as 550 MPa. A distinct martensite/austenite interface is observed during transformation, in contrast to NiTi exhibiting a rather homogeneous transformation during heating and cooling throughout the sample volume. Sputtered NiTiHf actuators tested in air can reach fatigue lives as high as 1.5 × 106 cycles at 1% strain.

Keywords

NiTi NiTiHf Mechanical behavior Shape memory films Thermal cycling 

Notes

Acknowledgements

We acknowledge the contribution of O. Rothe (design, development, and implementation of the fatigue testing setup), Prof. J. McCord (providing polarization microscopy equipment for optical surface investigations), Dr. Ulrich Schürmann, and Prof. Lorenz Kienle for TEM investigations.

References

  1. 1.
    Ishida S, Takei M (1995) Effect of heat treatment on shape memory behavior of Ti-rich Ti-Ni thin films. Mater Trans JIM 36(11):1349–1355CrossRefGoogle Scholar
  2. 2.
    Krulevitch L, Ramsey T, Hamilton N (1996) Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4):270CrossRefGoogle Scholar
  3. 3.
    Ishida S, Takei N, Miyazaki H (1996) Effect of aging on shape memory behavior of Ti–51.3 at.% Ni thin films. Metall Mater Trans A 27(12):3753Google Scholar
  4. 4.
    Miyazaki H, Ishida S (1996) Martensitic transformations in sputter-deposited Ti–Ni–Cu shape memory alloy thin films. Thin Sol Films 281–282:364CrossRefGoogle Scholar
  5. 5.
    Quandt H, Holleck FT (1996) Kohl: Sputter deposition of TiNi, TiNiPd and TiPd films displaying the two-way shape-memory effect. Sens Actuators A 53(1–3):434–439CrossRefGoogle Scholar
  6. 6.
    Miyazaki N, Ishida K (1997) Recent developments in sputter-deposited Ti-Ni-base shape memory alloy thin films. J Phys IV 07, C5-275–C5-280Google Scholar
  7. 7.
    de Miranda RL, Zamponi C, Quandt E (2013) Micropatterned freestanding superelastic TiNi films. Adv Eng Mater 15(1–2):66CrossRefGoogle Scholar
  8. 8.
    Bechtold C, de Miranda RL, Quandt E (2015) Capability of sputtered micro-patterned NiTi thick films. Shap Mem Superelast. https://doi.org/10.1007/s40830-015-0029-9
  9. 9.
    Loger E, Haupt, de Miranda RL, Lutter Q (2016) Microstructured nickel-titanium thin film leaflets for hybrid tissue engineered heart valves fabricated by magnetron sputter deposition. Cardiovasc Eng Technol 7:69Google Scholar
  10. 10.
    Levi K, Carman GP (2008) Smart materials applications for pediatric cardiovascular devices. Pediatr Res 63:552CrossRefGoogle Scholar
  11. 11.
    Bechtold C, de Miranda RL, Chluba C, Quandt E (2016) Method for fabricating miniaturized NiTi self-expandable thin film devices with increased radiopacity. Shap Mem Superelast 2:391CrossRefGoogle Scholar
  12. 12.
    Bechtold C, de Miranda RL, Chluba C, Quandt E (2016) Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation. Biomed Microdev 18:106CrossRefGoogle Scholar
  13. 13.
    Miyazaki I (1999) Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Mater Sci Eng A 273–275:106–133CrossRefGoogle Scholar
  14. 14.
    Ishida S, Kimura T, Miyazaki S (2000) Stress–strain curves of sputter-deposited Ti–Ni thin films. Philos Mag A 80(4):967–980CrossRefGoogle Scholar
  15. 15.
    Matsunaga T, Kajiwara S, Ogawa K, Kikuchi T, Miyazaki S (1999) High strength Ti_Ni-based shape memory thin films. Mater Sci Eng A 273:745CrossRefGoogle Scholar
  16. 16.
    Sato M, Ishida A, Miyazaki S (1998) Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni. Thin Solid Films 315:305Google Scholar
  17. 17.
    Ishida A, Sato M, Kimura T, Sawaguchi T (2001) Effects of composition and annealing on shape memory behavior of Ti-rich Ti–Ni thin films formed by sputtering. Mater Trans 42(6):1060CrossRefGoogle Scholar
  18. 18.
    Zhang JX, Sato M, Ishida A (2006) Deformation mechanism of martensite in Ti-rich Ti–Ni shape memory alloy thin films. Acta Mater 54(4):1185CrossRefGoogle Scholar
  19. 19.
    Meng XL, Sato M, Ishida A (2008) Structure of martensite in Ti-rich Ti–Ni–Cu thin films annealed at different temperatures. Acta Mater 56(14):3394CrossRefGoogle Scholar
  20. 20.
    Ishida A, Sato M, Gao Z (2013) Properties and applications of Ti–Ni–Cu shape-memory-alloy thin films. J Alloys Compd 577(S1):S184CrossRefGoogle Scholar
  21. 21.
    Ishida A, Sato M, Gao Z (2014) Effects of Ti content on microstructure and shape memory behavior of TixNi(84.5−x)Cu15.5 (x = 44.6–55.4) thin films. Acta Mater 69:292Google Scholar
  22. 22.
    Ishida A, Sato M, Gao Z (2015) Microstructure and shape memory behavior of Ti55.5Ni44.5_xCux (x = 11.8_23.5) thin films. Intermetallics 58:103Google Scholar
  23. 23.
    Grummon DS (2003) Thin-film shape-memory materials for high-temperature applications. JOM 55:24CrossRefGoogle Scholar
  24. 24.
    Rao J, Lawson K, Nicholls JR (2010) Nickel titanium and nickel titanium hafnium shape memory alloy thin films. Surf Sci Coat 204:2331CrossRefGoogle Scholar
  25. 25.
    König D, Zarnetta R, Savan A, Brunken H, Ludwig A (2011) Phase transformation, structural and functional fatigue properties of Ti–Ni–Hf shape memory thin films. Acta Mater 59(8):3267CrossRefGoogle Scholar
  26. 26.
    Sawaguchi T, Sato M, Ishida A (2001) Ti–Pd–Ni high temperature shape memory thin films formed with carousel type magnetron sputtering apparatus. J Phys IV 11:Pr8-427–Pr8-432Google Scholar
  27. 27.
    Mohanchandra KP, Shin D, Carman GP (2005) Deposition and characterization of Ti–Ni–Pd and Ti–Ni–Pt shape memory alloy thin films. Smart Mater Struct 14(5):21CrossRefGoogle Scholar
  28. 28.
    Zhang C, Yang C, Ding D, Qian S, Wu J (2005) Characteristics of Ti–Ni–Pd shape memory alloy thin films. Mater Charact 55:340–344CrossRefGoogle Scholar
  29. 29.
    Zarnetta R, Zelaya E, Eggeler G, Ludwig A (2009) Influence of precipitates on the thermal hysteresis of Ti–Ni–Pd shape memory thin films. Scr Mater 60(5):352CrossRefGoogle Scholar
  30. 30.
    Kim HY, Yuan Y, Nam T, Miyazaki S (2011) Effect of Pd content on crystallization and shape memory properties of Ti–Ni–Pd thin films. Int J Smart Nano Mater 2(1):9CrossRefGoogle Scholar
  31. 31.
    Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-Phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr high-temperature shape memory alloys. Shap Mem Superelast 4(1):85CrossRefGoogle Scholar
  32. 32.
    Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, Ludwig A, Thienhaus A, Wuttig M, Zhang Z, Takeuchi I (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5:286CrossRefGoogle Scholar
  33. 33.
    Grossmann Ch, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40A(11):2530CrossRefGoogle Scholar
  34. 34.
    Bechtold C, Chluba C, de Miranda RL, Quandt E (2012) High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett 101:091903CrossRefGoogle Scholar
  35. 35.
    Chluba C, Ge W, de Miranda RL, Strobel J, Kienle L, Quandt E, Wuttig M (2015) Ultralow-fatigue shape memory alloy films. Science 348:1004CrossRefGoogle Scholar
  36. 36.
    Chluba C, Ge W, Dankwort T, Bechtold C, de Miranda RL, Kienle L, Wuttig M, Quandt E (2016) Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films. Philos Trans R Soc A 374:20150311CrossRefGoogle Scholar
  37. 37.
    Sehitoglu H, Wu Y, Patriarca L, Ojha A, Zhang S, Chlumlyakov Y, Nishida M (2017) Superelasticity and shape memory behavior of NiTiHf alloys. Shap Mem Superelast 3:168CrossRefGoogle Scholar
  38. 38.
    Sehitoglu H, Wu Y, Patriarca L (2017) Shape memory functionality under multi-cycles in NiTiHf. Scr Mater 129:11CrossRefGoogle Scholar
  39. 39.
    Kohl M, Dittmann D, Quandt E, Winzek B (2000) Thin film shape memory microvalves with adjustable operation temperature. Sens Actuators A 83:214CrossRefGoogle Scholar
  40. 40.
    Büttgenback S, Bütefisch S, Leester-Schädel M, Wogersien A (2001) Shape memory microactuators. Microsyst Technol 7:165CrossRefGoogle Scholar
  41. 41.
    Xu D, Wang L, Ding G, Zhou YH, Yu A, Cai B (2001) Characteristics and fabrication of NiTi-Si diaphragm micropump. Sens Actuators A 93:87CrossRefGoogle Scholar
  42. 42.
    Gill JH, Chang DT, Momoda LA, Carman GP (2001) Manufacturing issues of thin film NiTi microwrapper. Sens Actuators A 93:148CrossRefGoogle Scholar
  43. 43.
    Gill JJ, Ho K, Carman GP (2002) Three-dimensional thin-film shape memory alloy microactuator with two-way effect. J Microelectromech Syst 11(1):68CrossRefGoogle Scholar
  44. 44.
    Kohl M (2004) Shape memory microactuators. Springer, BerlinGoogle Scholar
  45. 45.
    Seong M, Mohanchandra KP, Lin Y, Carman GP (2008) Development of a 'bi-layer lift-off' method for high flow rate and high frequency Nitinol MEMS valve fabrication. J Micromech Microeng 18(7):075034CrossRefGoogle Scholar
  46. 46.
    Barth J, Krevet B, Kohl M (2009) A bistable SMA microactuator with large work output. Transducers M3P(005):41Google Scholar
  47. 47.
    Megnin C, Barth J, Kohl M (2011) A bistable SMA microvalve for 3-2-way control. Sens Actuators A 188:285CrossRefGoogle Scholar
  48. 48.
    Megnin C, Kohl M (2014) Shape memory alloy microvalves for a fluidic control system. J Micromech Microeng 24:025001CrossRefGoogle Scholar
  49. 49.
    Brinson LA, Schmidt I, Lammering R (2004) Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52:1549–1571CrossRefGoogle Scholar
  50. 50.
    ASTM E3097-17 Standard test method for mechanical uniaxial constant force thermal cycling of shape memory alloysGoogle Scholar
  51. 51.
    Shaw K (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater 45(2):683CrossRefGoogle Scholar
  52. 52.
    Tan L, Sittner S (2004) Lüders-like deformation associated with stress-induced martensitic transformation in NiTi. Scr Mater 50(2):193CrossRefGoogle Scholar
  53. 53.
    Zheng L (2016) He, Yj, Moumni, Z: Luders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy. Scr Mater 123:46CrossRefGoogle Scholar
  54. 54.
    Gil FJ, Manero JM, Planell JA (1995) Effect of grain size on the martensitic transformation in NiTi alloy. J Mater Sci 30(10):2526CrossRefGoogle Scholar
  55. 55.
    Yin H, Moumni S (2016) Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue 88:166CrossRefGoogle Scholar
  56. 56.
    Kockar K, Kim C, Sharp Y (2008) Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 56(14):3630CrossRefGoogle Scholar
  57. 57.
    Ishida S (2011) Shape memory behaviour of Ti51.5Ni(48.5-x)Cux (x=23.4–37.3) thin films with submicron grain sizes. Intermetallics 19(12):1878–1886Google Scholar
  58. 58.
    Frenzel J, Burow JA, Payton E, Rezanka S, Eggeler G (2011) Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures. Adv Eng Mater 13(4):256CrossRefGoogle Scholar
  59. 59.
    Wohlschlögel M, de Miranda RL, Schüßler A, Quandt E (2016) Nitinol: tubing versus sputtered film: microcleanliness and corrosion behavior. J Biomed Mater Res 104(6):1176CrossRefGoogle Scholar
  60. 60.
    Siekmeyer G, Schüßler A, Quandt E (2014) Comparison of the fatigue performance of commercially produced nitinol samples versus sputter-deposited nitinol. JMEPEG 23:2437CrossRefGoogle Scholar
  61. 61.
    Wohlschlögel M, Steegmüller R, Schüßler A (2014) Effect of inclusion size and distribution on the corrosion behavior of medical-device grade nitinol tubing. J Mater Eng Perf 23(7):635Google Scholar
  62. 62.
    Saghaian SM, Karaca HE, Souri M, Turabi AS, Noebe RD (2016) Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater Des 101:340Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Acquandas GmbHKielGermany
  2. 2.Inorganic Functional MaterialsChristian Albrechts-Universität Zu KielKielGermany

Personalised recommendations