Correlation of Dynamic Elastic Properties of a Heat-Treated CoNiAl Alloy System with Its Microstructural Changes

  • Md. Sarowar Hossain
  • P. Gokul
  • Barnana Pal
  • P. K. MukhopadhyayEmail author
Technical Article


Elastic responses of a solid represent structural properties and their changes as a function of external parameters like heat treatment. Heat treatment is a standard way to suitably alter the physical properties of an alloy. Here the effects of different annealing temperatures on polycrystalline Co–Ni–Al (Co36Ni36Al28) samples were investigated in detail using X-ray diffraction and electron microscopy that showed significant changes in the phase fractions, B2 austenite (β), non-FSMA A1 (γ), and the Martensite L10\((\beta^{\prime})\) at room temperature. These changes in turn affected the transition temperatures, electrical resistivity, and magnetic properties of the samples. Using a resonant ultrasonic spectrometer (RUS), the dynamic elastic properties of the samples were measured at room temperature, and the results were found to reflect the phase evaluations correctly. This is the first time that RUS measurements are reported in this alloy system. All these findings can be used to fine tune a sample for the desired application.


Martensitic transformation Annealing Magnetic properties Elastic moduli Resonant ultrasound spectroscopy (RUS) 



One of the authors, GP, acknowledges the support of The Director, S N Bose National Center for Basic Sciences and The Principal, Amrita Vishwa Vidyapeetham, Amritapuri. SH is thankful to TWAS—Bose for the fellowship. PKM thanks the Technical Research Centre for support. Finally, Drs. Suman Sarkar and B. Rajini Kanth are thanked for helping with data –analysis and interpretations.


  1. 1.
    Hayden HW, Moffatt WG, Wulff J (1966) The structure and properties of materials, vol III. Wiley, New YorkGoogle Scholar
  2. 2.
    Ashby M, Jones DRH (2005) Engineering materials-1. Butterworth-Heinemann, AmsterdamGoogle Scholar
  3. 3.
    Marioni MA, O’Handley RC, Allen SM (2003) Pulsed magnetic field-induced actuation of Ni-Mn-Ga single crystals. Appl Phys Lett 83:3966CrossRefGoogle Scholar
  4. 4.
    Henry CP, Bono D, Feuchtwanger J, Allen SM, O’Handley RC (2002) AC field-induced actuation of single crystal Ni–Mn–Ga. J Appl Phys 91(10):7810CrossRefGoogle Scholar
  5. 5.
    Murray SJ, Marioni M, Allen SM, O’Handley RC (2000) 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett 77(6):886CrossRefGoogle Scholar
  6. 6.
    Hu Z, Kanth BR, Tamang R, Varghese B, Sow C-H, Mukhopadhyay PK (2012) Visible microactuation of a ferromagnetic shape memory alloy by focused laser beam. Smart Mater Struct 21(3):032003CrossRefGoogle Scholar
  7. 7.
    Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69(13):1966CrossRefGoogle Scholar
  8. 8.
    Ullakko K, Huang JK, Kokorin VV, O’Handley RC (1997) Magnetically controlled shape memory effect in Ni sub 2 MnGa intermetallics. Scripta Mater 36(10):1133CrossRefGoogle Scholar
  9. 9.
    Gejima F, Sutou Y, Kainuma R, Ishida K (1999) Magnetic transformation of Ni 2 AlMn Heusler-type shape memory alloys. Metall Mater Trans A 30(10):2721CrossRefGoogle Scholar
  10. 10.
    Kainuma R, Gejima F, Sutou Y, Ohnuma I, Ishida K (2000) Ordering, martensitic and ferromagnetic transformations in Ni–Al–Mn Heusler shape memory alloys. Mater Trans JIM 41(8):943CrossRefGoogle Scholar
  11. 11.
    Kubota T, Okazaki T, Furuya Y, Watanabe T (2002) Phase transformation in rapidly solidified Fe 29.6 at% Pd ribbons. J Magn Magn Mater 239:551CrossRefGoogle Scholar
  12. 12.
    Hornbogen E, Jost N (1991) Alloys of iron and reversibility of martensitic transformations. Le J de Physique IV 1(C4):199Google Scholar
  13. 13.
    Chernenko VA, Cesari E, Pons J, Segui C (2000) Phase transformations in rapidly quenched Ni–Mn–Ga alloys. J Mater Res 15(7):1496CrossRefGoogle Scholar
  14. 14.
    Sato M, Okazaki T, Furuya Y, Wutting M (2003) Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Matter Trans JIM 44(3):372CrossRefGoogle Scholar
  15. 15.
    Rajini Kanth B, Ramarao NV, Panda AK, Gopalan R, Mitra A, Mukhpadhyay PK (2010) Effect of annealing on the martensitic transformation of a CoNiAl ferromagnetic shape memory alloy. J Alloys Compd 491(1):22CrossRefGoogle Scholar
  16. 16.
    Hossain MS, Rajini Kanth B, Mukhopadhyay PK (2017) Effect of annealing on elastic moduli of a FSMA shape. Mem Superelasticity 3(3):199CrossRefGoogle Scholar
  17. 17.
    Lee J-H, Oh I-H, Jang J-H, Hong S-K, Park H-K (2019) J Alloys Compd 786:1–20CrossRefGoogle Scholar
  18. 18.
    Migliori A, Sarrao JL (1997) Resonant Ultrasound Spectroscopy. Wiley, New YorkGoogle Scholar
  19. 19.
    Ulrich TJ, McCall KR, Guyer RA (2002) Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. J Acoust Soc Am 111(4):1667–1674CrossRefGoogle Scholar
  20. 20.
    Vaughan MJ, van Wijk K, Prior DJ, Bowman MH (2016) Monitoring the temperature-dependent elastic and anelastic properties in isotropic polycrystalline ice using resonant ultrasound spectroscopy. Cryosphere 10(6):2821CrossRefGoogle Scholar
  21. 21.
    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems. Mater Trans 42(11):2472CrossRefGoogle Scholar
  22. 22.
    Pradhan SK, Bid S, Gateshki M, Petkov V (2005) Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater Chem Phys 93(1):224CrossRefGoogle Scholar
  23. 23.
    Bid S, Pradhan SK (2002) Preparation and microstructure characterization of ball-milled ZrO2 powder by the Rietveld method: monoclinic to cubic phase transformation without any additive. J Appl Crystallogr 35(5):517CrossRefGoogle Scholar
  24. 24.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRefGoogle Scholar
  25. 25.
    Bagchi A, Sarkar S, Bysakh S, Sarkar S, Mukhopadhyay PK (2019) Possible mechanisms for degradation of photo induced micro actuation effect in a ferromagnetic shape memory alloy at high temperatures. J Appl Phys 125(14):144505CrossRefGoogle Scholar
  26. 26.
    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K (2001) Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl Phys Lett 79(12):3290CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Md. Sarowar Hossain
    • 1
  • P. Gokul
    • 1
    • 2
  • Barnana Pal
    • 4
  • P. K. Mukhopadhyay
    • 1
    • 3
    Email author
  1. 1.LCMP, S.N. Bose National Centre for Basic SciencesKolkataIndia
  2. 2.Department of Physics, Amrita School of Arts and SciencesAmrita Vishwa VidyapeethamKollamIndia
  3. 3.TRC, S.N. Bose National Centre for Basic SciencesKolkataIndia
  4. 4.CMP DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations