Advertisement

Optimization of Post-processing Annealing Conditions of the Laser Powder Bed-Fused Ti–18Zr–14Nb Shape Memory Alloy: Structure and Functional Properties

  • A. Kreitcberg
  • V. Sheremetyev
  • M. Tsaturyants
  • S. Prokoshkin
  • V. BrailovskiEmail author
Technical Article
  • 30 Downloads

Abstract

Ti–18Zr–14Nb (at%) shape memory alloy was processed by laser powder bed fusion (LPBF) and subjected to post-processing annealing treatments in the 500–800 °C temperature range. The microstructure, crystallographic texture, static mechanical properties, and low-cycle fatigue behavior of this alloy in the as-built state and after different post-fusion annealings have been studied. It was found that a strongly columnar microstructure developed during LPBF processing morphed into a predominantly equiaxed grain structure after 800 °C recrystallization annealing. However, the highest number of cycles to failure during high-intensity strain-controlled fatigue testing (2% of strain in a cycle) was obtained after annealing at 500 °C, whereas the lowest number of cycles was found after annealing at 700 °C. A beneficial combination of static and fatigue mechanical properties with a relatively low Young’s modulus makes 500 °C-annealed LPBF Ti–18Zr–14Nb components suitable for biomedical applications, especially where the capacity of LPBF to manufacture geometrically complex and patient-specific load-bearing components makes a difference.

Keywords

Fatigue Mechanical behavior SMA Additive manufacturing Laser powder bed fusion Ti–Zr–Nb alloy 

Notes

Acknowledgements

The authors would like to express their appreciation for the financial support provided by NSERC (Natural Sciences and Engineering Research Council of Canada) and the Ministry of Education and Sciences of the Russian Federation in the framework of the Increase Competitiveness Program of NUST “MISIS” (Grant No. K4-2014-018).

References

  1. 1.
    Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Progress Mater Sci 54(3):397–425CrossRefGoogle Scholar
  2. 2.
    Long M, Rack H (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18):1621–1639CrossRefGoogle Scholar
  3. 3.
    Ashby M (2013) Designing architectured materials. Scr Mater 68(1):4–7CrossRefGoogle Scholar
  4. 4.
    Evans AG, Hutchinson JW, Ashby MF (1998) Multifunctionality of cellular metal systems. Progress Mater Sci 43(3):171–221CrossRefGoogle Scholar
  5. 5.
    Maloney K, Fink KD, Schaedler T, Kolodziejska J, Jacobsen A, Roper C (2012) Multifunctional heat exchangers derived from three-dimensional micro-lattice structures. Int J Heat Mass Transfer 55(9–10):2486–2493CrossRefGoogle Scholar
  6. 6.
    Hurt CW, Brandt M, Priya S, Bhatelia T, Patel J, Selvakannan PR, Bhargava S (2017) Combining additive manufacturing and catalysis: a review. Catal Sci Technol 7:3421–3439CrossRefGoogle Scholar
  7. 7.
    Ullah I, Brandt M, Feih S (2016) Failure and energy absorption characteristics of advanced 3D truss core structures. Mater Des 92:937–948CrossRefGoogle Scholar
  8. 8.
    Dadbakhsh S, Speirs M, Van Humbeeck J, Kruth JP (2016) Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. Metallic Mater 41(10):765–774Google Scholar
  9. 9.
    Yoneyama T, Miyazaki S (2008) SMA for biomedical applications. Woodhead, CambridgeGoogle Scholar
  10. 10.
    Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438–440:18–24CrossRefGoogle Scholar
  11. 11.
    Li SJ, Cui TC, Hao YL, Yang R (2008) Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater 4(2):305–317CrossRefGoogle Scholar
  12. 12.
    Miyazaki S (2017) My experience with Ti–Ni-based and Ti-based shape memory alloys. Shape Mem Superelasticity 3(4):279–314CrossRefGoogle Scholar
  13. 13.
    Kim HY, Fu J, Tobe H, Kim J, Miyazaki S (2015) Crystal structure, transformation strain, and superelastic property of Ti–Nb–Zr and Ti–Nb–Ta alloys. Shape Mem Superelasticity 1(2):107–116CrossRefGoogle Scholar
  14. 14.
    Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13):2651–2670CrossRefGoogle Scholar
  15. 15.
    Traini T, Mangano C, Sammons R, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533CrossRefGoogle Scholar
  16. 16.
    Kruth JP, Vandenbroucke B (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRefGoogle Scholar
  17. 17.
    Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhof G, Oosterwyck H, Kruth JP, Schrooten J (2012) The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4 V bone scaffolds. Acta Biomater 8(7):2824–2834CrossRefGoogle Scholar
  18. 18.
    Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Pattanayak DK, Matsushita T, Sasaki K, Nishida N, Kokubo T, Nakamura T (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7(5):2327–2336CrossRefGoogle Scholar
  19. 19.
    Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, Nishida N, Kokubo T (2011) Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater 7(3):1398–1406CrossRefGoogle Scholar
  20. 20.
    Habijan T, Haberland C, Meier H, Frenzel J, Wittsiepe J, Wuwer C, Greulich C, Schildhauer TA, Koller M (2013) The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. Mater Sci Eng C33(1):419–426CrossRefGoogle Scholar
  21. 21.
    Inaekyan K, Brailovski V, Prokoshkin S, Pushin V, Dubinskiy S, Sheremetyev V (2015) Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys. Mater Charact 103:65–74CrossRefGoogle Scholar
  22. 22.
    Kreitcberg A, Brailovski V, Prokoshkin S (2018) New biocompatible near-beta Ti-Zr-Nb alloy processed by laser powder bed fusion: process optimization. J Mater Process Technol 252:821–829CrossRefGoogle Scholar
  23. 23.
    Kreitcberg A, Brailovski V, Sheremetyev V, Prokoshkin S (2017) Effect of laser powder bed fusion parameters on the microstructure and texture development in superelastic Ti–18Zr–14Nb alloy. Shape Mem Superelasticity 3(4):361–372CrossRefGoogle Scholar
  24. 24.
    Kou S (2003) Welding metallurgy. Wiley, HobokenGoogle Scholar
  25. 25.
    Thijs L, Kempen K, Kruth J-P, Humbeeck JV (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61(5):1809–1819CrossRefGoogle Scholar
  26. 26.
    Prokoshkin S, Brailovski V, Dubinskiy S, Zhukova Y, Sheremetyev V, Konopatsky A, Inaekyan K (2016) Manufacturing, structure control, and functional testing of Ti–Nb-based SMA for medical application. Shape Mem Superelasticity 2(2):130–144CrossRefGoogle Scholar
  27. 27.
    Hari Kumar KC, Wollants P, Delaey L (1994) Thermodynamic assessment of the Ti-Zr system and calculation of the Nb-Ti-Zr phase diagram. J Alloys Compd 206(1):121–127CrossRefGoogle Scholar
  28. 28.
    Sheremetyev V, Kudryashova A, Dubinskiy S, Galkin S, Prokoshkin S, Brailovski V (2018) Structure and functional properties of metastable beta Ti-18Zr-14Nb (at.%) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment. J Alloys Compd 737:678–683CrossRefGoogle Scholar
  29. 29.
    Kreitcberg AY, Prokoshkin SD, Brailovski V, Korotitsky AV (2014) Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at% Ni alloy. Phys Met Metall 115(9):926–947CrossRefGoogle Scholar
  30. 30.
    Sheremetyev V, Kudryashova A, Cheverikin A, Korotitskiy A, Galkin S, Prokoshkin S, Brailovski V (2018) Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at.%) alloy for bone implants: microstructure, texture and functional properties. J Alloys Compd (submitted 2018)Google Scholar
  31. 31.
    Konopatsky AS, Dubinskiy SM, Zhukova YS, Sheremetyev V, Brailovski V, Prokoshkin S, Filonov MR (2017) Ternary Ti-Zr-Nb and quaternary Ti-Zr-Nb-Ta shape memory alloys for biomedical applications: structural features and cyclic mechanical properties. Mater Sci Eng A 702:301–311CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. Kreitcberg
    • 1
  • V. Sheremetyev
    • 2
  • M. Tsaturyants
    • 1
    • 2
  • S. Prokoshkin
    • 2
  • V. Brailovski
    • 1
    Email author
  1. 1.École de technologie supérieureMontrealCanada
  2. 2.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations