Shape Memory and Superelasticity

, Volume 5, Issue 1, pp 84–94 | Cite as

Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion

  • E. KarstenEmail author
  • G. Gerstein
  • O. Golovko
  • A. Dalinger
  • C. Lauhoff
  • P. Krooss
  • T. Niendorf
  • A. Samsonenko
  • H. J. Maier


Co–Ni–Ga alloys represent a new class of promising high-temperature shape memory alloys allowing realization of functional components for applications at elevated temperatures. Single crystals show a fully reversible pseudoelastic response at temperatures up to 500 °C. However, for most industrial applications, the application of polycrystalline material is needed. Polycrystalline Co–Ni–Ga alloys suffer from the anisotropic properties inherent to shape memory alloys, i.e., a strong orientation dependence of transformation strains, and therefore, are prone to intergranular fracture. This drawback can be curtailed by using appropriately textured material with a favorable grain-boundary orientation distribution. The current study discusses the impact of a hot-extrusion process on microstructural evolution and functional properties of polycrystalline Co–Ni–Ga high-temperature shape memory alloys paving the way to their robust application.


Pseudoelasticity Abnormal grain growth Hot extrusion High-temperature shape memory alloy 



Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit Program “Hochtemperatur-Formgedächtnislegierungen” (Project Number 200999873; Grant Nos. NI1327/3-2 and MA1175/34-2) is gratefully acknowledged.


  1. 1.
    Otsuka K, Waymann CM (1998) Shape memory materials. University Press, CambridgeGoogle Scholar
  2. 2.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRefGoogle Scholar
  3. 3.
    Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23CrossRefGoogle Scholar
  4. 4.
    Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, LLCGoogle Scholar
  5. 5.
    Duerig TW, Melton KN, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, OxfordGoogle Scholar
  6. 6.
    Funakubo H (1987) Shape memory alloys. Gordon and Breach, New YorkGoogle Scholar
  7. 7.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRefGoogle Scholar
  8. 8.
    Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloy Compd 420:145–157CrossRefGoogle Scholar
  9. 9.
    Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int J Mater Res 101(12):1–11CrossRefGoogle Scholar
  10. 10.
    Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Mater 55:663–666CrossRefGoogle Scholar
  11. 11.
    Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mater Trans A 39:2026–2039CrossRefGoogle Scholar
  12. 12.
    Niendorf T, Krooß P, Chumlyakov Y, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRefGoogle Scholar
  13. 13.
    Dadda J, Maier HJ, Karaman I, Chumlyakov YI (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57:6123–6134CrossRefGoogle Scholar
  14. 14.
    Dadda J, Canadinc D, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2007) Stress-strain-temperature behaviour of [001] single crystals of Co49Ni21Ga30 ferromagnetic shape memory alloys uder compression. Philos Mag 87(16):2313–2322CrossRefGoogle Scholar
  15. 15.
    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42(11):2472–2475CrossRefGoogle Scholar
  16. 16.
    Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys: Condens Matter 17(8):1301–1310Google Scholar
  17. 17.
    Liu J, Zheng H, Xia M, Huang Y, Li J (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys. Scripta Mater 52(9):935–938CrossRefGoogle Scholar
  18. 18.
    Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloys Compd 417(1–2):96–99CrossRefGoogle Scholar
  19. 19.
    Yan L, Yan X, Liang C, Yunqing M, Huibin X (2010) Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater 58:3655–3663CrossRefGoogle Scholar
  20. 20.
    Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59(3):1168–1183CrossRefGoogle Scholar
  21. 21.
    Vollmer M, Krooss P, Segel Ch, Weidner A, Paulsen A, Frenzel J, Schaper M, Eggeler G, Maier HJ, Niendorf T (2015) Damage evolution in pseudoelastic polycristalline Co-Ni-Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295CrossRefGoogle Scholar
  22. 22.
    Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRefGoogle Scholar
  23. 23.
    Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRefGoogle Scholar
  24. 24.
    Krooss P, Niendorf T, Lauhoff C, Karsten E, Gerstein G, Liehr A, Maier HJ (2019) Direct microstructure design by hot extrusion - High-temperature shape memory alloys with bamboo-like microstructure corresponding. Scripta Mater 162:127–131CrossRefGoogle Scholar
  25. 25.
    Maier HJ, Niendorf T, Bürgel R (2015) Handbuch Hochtemperatur-Werkstofftechnik. Springer Fachmedien, WiesbadenCrossRefGoogle Scholar
  26. 26.
    Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Arroyave R, Junkaew A, Chivukula A, Bajaj S, Yao C-Y, Garay A (2010) Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater 58:5220–5231CrossRefGoogle Scholar
  28. 28.
    Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co − Ni − Ga ferromagnetic shape memory alloy system. J Phase Equilib Diffus 27(1):75–82CrossRefGoogle Scholar
  29. 29.
    Braun C, Dake JM, Krill CE, Birringer R (2018) Abnormal grain growth mediated by fractal boundary migration at the nanoscale. Sci Rep 8(1592):1–6Google Scholar
  30. 30.
    Li Y, Liu HY, Fan-Bin M, Liu GD, Dai XF, Zhang M, Liu ZH, Chen JL, Wu GH (2004) Magnetic field-controlled two-way shape memory on CoNiGa single crystals. Appl Phys Lett 84(18):3594–3596CrossRefGoogle Scholar
  31. 31.
    Dai XF, Wang HY, Liu GD, Wang YG, Duan XF, Chen JL, Wu GH (2006) Effenct of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J Phys D Appl Phys 39:2886–2889CrossRefGoogle Scholar
  32. 32.
    Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation on CoNiGa shape memory alloys. Acta Mater 60:3535–3558CrossRefGoogle Scholar
  33. 33.
    Lackmann J, Niendorf T, Maxisch M, Grundmeier G, Maier HJ (2011) High-resolution in situ characterization of the surface evolution of a polycrystalline NiTi SMA alloy under pseudoelastic deformation. Mater Charact 62(3):298–303CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • E. Karsten
    • 1
    Email author
  • G. Gerstein
    • 1
  • O. Golovko
    • 1
  • A. Dalinger
    • 1
  • C. Lauhoff
    • 2
  • P. Krooss
    • 2
  • T. Niendorf
    • 2
  • A. Samsonenko
    • 3
  • H. J. Maier
    • 1
  1. 1.Institut für Werkstoffkunde (Materials Science), Leibniz Universität HannoverGarbsenGermany
  2. 2.Institut für Werkstofftechnik/Metallische Werkstoffe, Universität KasselKasselGermany
  3. 3.National Metallurgical Academy of UkraineDniproUkraine

Personalised recommendations