Shape Memory and Superelasticity

, Volume 5, Issue 1, pp 63–72 | Cite as

On the Oxidation Behavior and Its Influence on the Martensitic Transformation of Ti–Ta High-Temperature Shape Memory Alloys

  • Dennis LangenkämperEmail author
  • Alexander Paulsen
  • Christoph Somsen
  • Jan Frenzel
  • Gunther Eggeler


In the present work, the influence of oxidation on the martensitic transformation in Ti–Ta high-temperature shape memory alloys is investigated. Thermogravimetric analysis in combination with microstructural investigations by scanning electron microscopy and transmission electron microscopy were performed after oxidation at 850 °C and at temperatures in the application regime of 450 °C and 330 °C for 100 h, respectively. At 850 °C, internal oxidation results in the formation of a mixed layered scale of TiO2 and β-Ta2O5, associated with decomposition into Ta-rich bcc β-phase and Ti-rich hexagonal α-phase in the alloy. This leads to a suppression of the martensitic phase transformation. In addition, energy dispersive X-ray analysis suggests an oxygen stabilization of the α-phase. At 450 °C, a slow decomposition into Ta-rich β-phase and Ti-rich α-phase is observed. After oxidation at 330 °C, the austenitic matrix shows strong precipitation of the ω-phase that suppresses the martensitic transformation on cooling.


HTSMA Ti–Ta Oxidation TEM Martensite Austenite 



Financial support by Deutsche Forschungsgemeinschaft within the Research Unit Program 1766 “Hochtemperatur-Formgedächtnislegierungen” (Project Nos.: 200999873, TP1 and TP2) is gratefully acknowledged.


  1. 1.
    Duerig TW, Pelton AR (1994) Ti–Ni shape memory alloys. Materials properties handbook: titanium alloys. Knovel, New York, pp 1035–1048Google Scholar
  2. 2.
    Otsuka K, Ren X (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528CrossRefGoogle Scholar
  3. 3.
    Noebe R, Gaydosh D, Padula S II, Garg A, Biles T, Nathal M (2005) Properties and potential of two (Ni, Pt) Ti alloys for use as high-temperature actuator materials. Smart Struct Mater 2005:364–376Google Scholar
  4. 4.
    Meng XL, Zheng YF, Cai W, Zhao LC (2004) Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. J Alloy Compd 372:180–186CrossRefGoogle Scholar
  5. 5.
    Russell SM, Sczerzenie F (1995) Engineering considerations in the application of NiTiHf and NiAI as practical high-temperature shape memory alloys. In: MRS Proceedings, pp 455–460Google Scholar
  6. 6.
    Kim HY, Ohmatsu Y, Kim JI, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Mo–Ga alloys. Mater Trans 45:1090–1095CrossRefGoogle Scholar
  7. 7.
    Maeshima T, Nishida M (2004) Shape memory properties of biomedical Ti–Mo–Ag and Ti–Mo–Sn alloys. Mater Trans 45:1096–1100CrossRefGoogle Scholar
  8. 8.
    Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438–440:18–24CrossRefGoogle Scholar
  9. 9.
    Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429CrossRefGoogle Scholar
  10. 10.
    Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57:1068–1077CrossRefGoogle Scholar
  11. 11.
    Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti–Ta alloys. Phys Rev B 94:224104CrossRefGoogle Scholar
  12. 12.
    Niendorf T, Krooß P, Batyrsina E, Paulsen A, Frenzel J, Eggeler G, Maier HJ (2014) On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys: a new concept for fatigue life extension. Funct Mater Lett 07:1450042CrossRefGoogle Scholar
  13. 13.
    de Fontaine D, Paton E, Williams JC (1971) The omega phase transformation in titanium alloys as an example of displacement controlled reactions. Acta Mater 1971:1154–1162Google Scholar
  14. 14.
    Hickman BS (1969) The formation of omega phase in titanium and zirconium alloys: a review. J Mater Sci 4:554–563CrossRefGoogle Scholar
  15. 15.
    Miyazaki S, Kim HY, Buenconsejo PJS (2009) Development of high temperature Ti–Ta shape memory alloys. In: ESOMAT 2009: 8th European Symposium on Martensitic Transformations, EDP Sciences, Les Ulis, FranceGoogle Scholar
  16. 16.
    Prokoshkin DA, Voronova TA, Gorbova AS (1984) Investigation into oxidation kinetics for Ta-Ti alloys. Izvestiya Akademii Nauk SSSR, Metally, pp 178–180Google Scholar
  17. 17.
    Chen YS, Rosa CJ (1980) Oxidation characteristics of Ti–4.37 wt.% Ta alloy in the temperature range 1258–1473 K. Oxid Met 14:167–185CrossRefGoogle Scholar
  18. 18.
    Schmidt FF, Klopp WD, Maykuth DJ, Ogden HR, Jaffee RI (1961) Investigation of the properties of tantalum and its alloys, WADD Technical Report 1961Google Scholar
  19. 19.
    Schmidt FF, Klopp WD, Albrecht WD, Holden FC, Ogden HR, Jaffee RI (1960) Investigation of the properties of tantalum and its alloys, WADD Technical Report 1959Google Scholar
  20. 20.
    Klopp WD, Maykuth DJ, Jaffee RI (1961) Effects of alloying on the oxidation behavior of tantalum. Trans ASM 53:637Google Scholar
  21. 21.
    Michael AB (1959) The oxidation of columbian base and tantalum base alloys. React Met 1959:587–607Google Scholar
  22. 22.
    Maynor HW, Barrett BR, Swift RE (1956) Scaling of titanium and titanium-based alloys in air. Corros NACE 12:49–60CrossRefGoogle Scholar
  23. 23.
    Park Y, Butt DP (1999) Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys. Oxid Met 51:383–402CrossRefGoogle Scholar
  24. 24.
    Hanrahan RJ, Butt DP (1997) Oxidation kinetics and mechanisms of Ti–Ta alloys. Oxid Met 47:317–353CrossRefGoogle Scholar
  25. 25.
    Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. IJMR 105:156–167CrossRefGoogle Scholar
  26. 26.
    Murray JL (1981) The Ta–Ti (tantalum–titanium) system. Bull Alloy Phase Diagr 2:62–66CrossRefGoogle Scholar
  27. 27.
    Garg SP, Krishnamurthy N, Awasthi A, Venkatraman M (1996) The O–Ta (oxygen–tantalum) system. J Phase Equilib 17:63–77CrossRefGoogle Scholar
  28. 28.
    Murray JL, Wriedt HA (1987) The O–Ti (oxygen–titanium) system. Bull Alloy Phase Diagr 1987:148–165CrossRefGoogle Scholar
  29. 29.
    Bieler TR, Trevino RM, Zeng L, Franco B, Gerald LL, Peter W (2005) Alloys: titanium. Encyclopedia of condensed matter physics. Elsevier, Amsterdam, pp 65–76CrossRefGoogle Scholar
  30. 30.
    Peters M, Hemptenmacher J, Kumpfert J, Leyens C (2007) Titan und Titanlegierungen: Struktur, Gefüge, Eigenschaften. In: Titan und Titanlegierungen, pp 1–37Google Scholar
  31. 31.
    Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57:2509–2515CrossRefGoogle Scholar
  32. 32.
    Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Manag Rev 106:331–341Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Dennis Langenkämper
    • 1
    Email author
  • Alexander Paulsen
    • 1
  • Christoph Somsen
    • 1
  • Jan Frenzel
    • 1
  • Gunther Eggeler
    • 1
  1. 1.Institut für WerkstoffeRuhr-Universität BochumBochumGermany

Personalised recommendations