Shape Memory and Superelasticity

, Volume 5, Issue 1, pp 73–83 | Cite as

Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys

  • C. Lauhoff
  • M. Vollmer
  • P. KrooßEmail author
  • I. Kireeva
  • Y. I. Chumlyakov
  • T. Niendorf
Special Issue: HTSMA 2018, Invited Paper


In recent years, Co–Ni–Ga high-temperature shape memory alloys (HT-SMAs) attracted a lot of scientific attention due to their superior functional material properties. In the single-crystalline state, Co–Ni–Ga HT-SMAs feature a good pseudoelastic response up to 500 °C. However, in the polycrystalline condition Co–Ni–Ga suffers significant grain constraints and premature fracture at grain boundaries. In this regard, crystallographic orientations of the grains being involved as well as morphology and geometrical orientation of the grain boundaries with respect to the loading direction under pseudoelastic deformation are expected to be of crucial importance. Therefore, this study addresses the structural integrity of engineered grain boundaries, i.e., specifically selected grain boundaries in terms of orientation, grain boundary morphology, and crystallographic grain orientations of adjacent grains. Mechanical tests combined with in situ methods and post-mortem scanning electron microscopy investigations are used to shed light on the prevailing microstructural features resulting in any kind of structural degradation.


High-temperature shape memory alloys (HT-SMAs) Grain boundary Grain boundary engineering Structural degradation Co–Ni–Ga 



Financial support by Deutsche Forschungsgemeinschaft (DFG) within the Research Unit Program “Hochtemperatur-Formgedächtnislegierungen” (Project No. 200999873; Subproject 5; Contract No. NI1327/3-2) is gratefully acknowledged. The work of Y.I.C. was carried out with financial support from the Ministry of Science and Education of Russian Federation (State Task No. 16.6554.2017/6.7). The authors acknowledge the assistance of Thomas Pham and Michael Wiegand with the experiments.


  1. 1.
    Lagoudas DC (2008) Shape Mem Alloys. Springer, US, Boston, MAGoogle Scholar
  2. 2.
    Otsuka K, Wayman CM (eds) (1999) Shape memory materials, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Firstov GS, van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys. Mater Sci Eng A 378:2–10CrossRefGoogle Scholar
  4. 4.
    Ma J, Karaman I, Noebe RD (2013) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRefGoogle Scholar
  5. 5.
    Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57:2509–2515CrossRefGoogle Scholar
  6. 6.
    Sehitoglu H, Patriarca L, Wu Y (2017) Shape memory strains and temperatures in the extreme. Curr Opin Solid State Mater Sci 21:113–120CrossRefGoogle Scholar
  7. 7.
    Reul A, Lauhoff C, Krooß P, Gutmann MJ, Kadletz PM, Chumlyakov YI, Niendorf T et al (2018) In situ neutron diffraction analyzing stress-induced phase transformation and martensite Elasticity in [001]-Oriented Co49Ni21Ga30 shape memory alloy single crystals. Shape Mem Superelast 4:61–69CrossRefGoogle Scholar
  8. 8.
    Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168–1183CrossRefGoogle Scholar
  9. 9.
    Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K, Ouladdiaf B et al (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys 17:1301–1310Google Scholar
  10. 10.
    Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloys Compd 420:145–157CrossRefGoogle Scholar
  11. 11.
    Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scr Mater 55:663–666CrossRefGoogle Scholar
  12. 12.
    Monroe JA, Karaman I, Karaca HE, Chumlyakov YI, Maier HJ (2010) High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension. Scr Mater 62:368–371CrossRefGoogle Scholar
  13. 13.
    Kireeva IV, Picornell C, Pons J, Kretinina IV, Chumlyakov YI, Cesari E (2014) Effect of oriented γ′ precipitates on shape memory effect and superelasticity in Co–Ni–Ga single crystals. Acta Mater 68:127–139CrossRefGoogle Scholar
  14. 14.
    Kireeva IV, Pons J, Picornell C, Chumlyakov YI, Cesari E, Kretinina IV (2013) Influence of γ′ nanometric particles on martensitic transformation and twinning structure of L10 martensite in Co–Ni–Ga ferromagnetic shape memory single crystals. Intermetallics 35:60–66CrossRefGoogle Scholar
  15. 15.
    Niendorf T, Dadda J, Lackmann J, Monroe JA, Karaman I, Panchenko E, Karaca HE et al (2013) Tension-compression asymmetry in Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Mater Sci Forum 738–739:82–86CrossRefGoogle Scholar
  16. 16.
    Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW et al (2015) Functional fatigue and tension-compression asymmetry in [001]-Oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem Superelast 1:6–17CrossRefGoogle Scholar
  17. 17.
    Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mat Trans A 39:2026–2039CrossRefGoogle Scholar
  18. 18.
    Krooß P, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Maier HJ et al (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy. Shape Mem Superelast 2:37–49CrossRefGoogle Scholar
  19. 19.
    Vollmer M, Krooß P, Segel C, Weidner A, Paulsen A, Frenzel J, Schaper M et al (2015) Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295CrossRefGoogle Scholar
  20. 20.
    Dar RD, Yan H, Chen Y (2016) Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scr Mater 115:113–117CrossRefGoogle Scholar
  21. 21.
    Ishida K, Kainuma R, Ueno N, Nishizawa T (1991) Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall Trans A 22:441–446CrossRefGoogle Scholar
  22. 22.
    Kainuma R, Ishida K, Nishizawa T (1992) Thermoelastic martensite and shape memory effect in B2 Base Ni-Al-Fe alloy with enhanced ductility. Metall Trans A 23:1147–1153CrossRefGoogle Scholar
  23. 23.
    Vollmer M, Segel C, Krooß P, Günther J, Tseng LW, Karaman I, Weidner A et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26CrossRefGoogle Scholar
  24. 24.
    Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114:53503CrossRefGoogle Scholar
  25. 25.
    Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60:282–292CrossRefGoogle Scholar
  26. 26.
    Ueland SM, Chen Y, Schuh CA (2012) Oligocrystalline Shape Memory Alloys. Adv Funct Mater 22:2094–2099CrossRefGoogle Scholar
  27. 27.
    Kusama T, Omori T, Saito T, Kise S, Tanaka T, Araki Y, Kainuma R (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8:354CrossRefGoogle Scholar
  28. 28.
    Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRefGoogle Scholar
  29. 29.
    Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133CrossRefGoogle Scholar
  30. 30.
    Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2003) Effect of grain size and texture on superelasticity of Cu-AI-Mn-based shape memory alloys. J Phys IV France 112:511–514CrossRefGoogle Scholar
  31. 31.
    Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850CrossRefGoogle Scholar
  32. 32.
    Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71CrossRefGoogle Scholar
  33. 33.
    Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRefGoogle Scholar
  34. 34.
    Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1:32103CrossRefGoogle Scholar
  35. 35.
    Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23CrossRefGoogle Scholar
  36. 36.
    Liu JL, Huang HY, Xie JX (2014) The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Mater Des 64:427–433CrossRefGoogle Scholar
  37. 37.
    Liu JL, Huang HY, Xie JX, Xu S, Li F (2017) Superelastic fatigue of columnar-grained Cu-Al-Mn shape memory alloy under cyclic tension at high strain. Scr Mater 136:106–110CrossRefGoogle Scholar
  38. 38.
    Niendorf T, Krooß P, Somsen C, Eggeler G, Chumlyakov YI, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRefGoogle Scholar
  39. 39.
    Chumlyakov Y, Panchenko E, Kireeva I, Karaman I, Sehitoglu H, Maier HJ, Tverdokhlebova A et al (2008) Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Mater Sci Eng A 481–482:95–100CrossRefGoogle Scholar
  40. 40.
    J. Dadda (2009) Thermomechanical and Microstructural Characterization of Co49Ni21Ga30 and Co38Ni33Al29 High-temperature Shape Memory Alloy Single Crystals. Thesis, Paderborn UniversityGoogle Scholar
  41. 41.
    Dadda J, J-rgen Maier H, Karaman I, Chumlyakov Y (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co 49 Ni 21 Ga 30 shape memory alloy single crystals. Int J Mater Res 101:1–11CrossRefGoogle Scholar
  42. 42.
    Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69:812–815CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • C. Lauhoff
    • 1
  • M. Vollmer
    • 1
  • P. Krooß
    • 1
    Email author
  • I. Kireeva
    • 2
  • Y. I. Chumlyakov
    • 2
  • T. Niendorf
    • 1
  1. 1.Institut für Werkstofftechnik (Materials Engineering)Universität KasselKasselGermany
  2. 2.Siberian Physical Technical InstituteTomsk State UniversityTomskRussia

Personalised recommendations