Shape Memory and Superelasticity

, Volume 5, Issue 1, pp 6–15 | Cite as

Reconciling Experimental and Theoretical Data in the Structural Analysis of Ti–Ta Shape-Memory Alloys

  • Alberto FerrariEmail author
  • Peter M. Kadletz
  • Tanmoy Chakraborty
  • Kunyen Liao
  • Dennis Langenkämper
  • Yahya Motemani
  • Alexander Paulsen
  • Yury Lysogorskiy
  • Jan Frenzel
  • Jutta Rogal
  • Alfred Ludwig
  • Christoph Somsen
  • Ralf Drautz
  • Wolfgang W. Schmahl
Special Issue: HTSMA 2018, Invited Paper


The structural characterization of the various phases that occur in Ti–Ta-based high-temperature shape-memory alloys is complicated by the presence of many competing phases as a function of composition. In this study, we resolve apparent inconsistencies between experimental data and theoretical calculations by suggesting that phase separation and segregation of undesired phases are not negligible in these alloys, and that finite temperature effects should be taken into account in the modeling of these materials. Specifically, we propose that the formation of the ω phase at low Ta content and of the σ phase at high Ta content implies a difference between the nominal alloy composition and the actual composition of the martensitic and austenitic phases. In addition, we show that temperature affects strongly the calculated values of the order parameters of the martensitic transformation occurring in Ti–Ta.


Phase separation Segregation High-temperature shape-memory alloys X-ray diffraction Density functional theory 



This study has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the research unit FOR 1766 (High Temperature Shape Memory Alloys,, project number 200999873), as a collaboration between sub-projects TP1, TP2, and TP3. Part of the calculations have been carried out on the Gamma and Triolith clusters from the Swedish National Infrastructure for Computing (SNIC), and on the Beskow cluster from the Center for High Performance Computing (PDC).


  1. 1.
    Van Humbeeck J (1999) High temperature shape memory alloys. J Eng Mater Technol 121(1):98–101CrossRefGoogle Scholar
  2. 2.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRefGoogle Scholar
  3. 3.
    Eckelmeyer KH (1976) The effect of alloying on the shape memory phenomenon in nitinol. Scr Metall 10(8):667–672CrossRefGoogle Scholar
  4. 4.
    Angst DR, Thoma PE, Kao MY (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51−xHfx shape memory alloys. J Phys IV 5(C8):747–752Google Scholar
  5. 5.
    Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61(19):7422–7431CrossRefGoogle Scholar
  6. 6.
    Kockar B, Karaman I, Kim JI, Chumlyakov YI (2006) A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr Mater 54(12):2203–2208CrossRefGoogle Scholar
  7. 7.
    Saghaian SM, Karaca HE, Tobe H, Turabi AS, Saedi S, Saghaian SE, Chumlyakov YI, Noebe RD (2017) High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater 134:211–220CrossRefGoogle Scholar
  8. 8.
    Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr high-temperature shape memory alloys. Shap Mem Superelast 4(1):85–92CrossRefGoogle Scholar
  9. 9.
    Swann PR, Warlimont H (1963) The electron-metallography and crystallography of copper-aluminum martensites. Acta Metall 11(6):511–527CrossRefGoogle Scholar
  10. 10.
    Recarte V, Pérez-Sáez RB, Bocanegra EH, Nó ML, San Juan J (1999) Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater Sci Eng A 273:380–384CrossRefGoogle Scholar
  11. 11.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRefGoogle Scholar
  12. 12.
    Bagarjatskii YA, Nosova GI, Tagunova TV (1958) Laws of formation of metastable phase in titanium alloys. Dokl. Akad. Nauk SSSR 122(4):593–596 in Russian Google Scholar
  13. 13.
    Bywater KA, Christian JW (1972) Martensitic transformations in titanium-tantalum alloys. Philos. Mag. 25(6):1249–1273CrossRefGoogle Scholar
  14. 14.
    Fedotov SG, Chelidze TV, Kovneristyj YK, Sanadze VV (1985) Phase structure, critical points Ms and As of martensitic transformation and elastic properties of metastable alloys of the Ti–Ta system. Fiz Met Metalloved 60(3):567–570 in Russian Google Scholar
  15. 15.
    Fedotov SG, Chelidze TV, Kovneristyj YK, Sanadze VV (1986) Phase transformation in metastable alloys of the Ti–Ta system during heating. Fiz Met Metalloved 62(2):328–332 in Russian Google Scholar
  16. 16.
    Petrzhik MI, Fedotov SG, Kovneristyi YK, Zhebyneva NF (1992) Effect of thermal cycling on the structure of quenched alloys of the Ti–Ta–Nb system. Met Sci Heat Treat 34(3–4):190–193CrossRefGoogle Scholar
  17. 17.
    Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077CrossRefGoogle Scholar
  18. 18.
    Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57(8):2509–2515CrossRefGoogle Scholar
  19. 19.
    Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64(12):1114–1177CrossRefGoogle Scholar
  20. 20.
    Kim HY, Fukushima T, Buenconsejo PJS, Nam TH, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater Sci Eng A 528(24):7238–7246CrossRefGoogle Scholar
  21. 21.
    Zheng XH, Sui JH, Zhang X, Yang ZY, Wang HB, Tian XH, Cai W (2013) Thermal stability and high-temperature shape memory effect of Ti–Ta–Zr alloy. Scr Mater 68(12):1008–1011CrossRefGoogle Scholar
  22. 22.
    Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res 105(2):156–167CrossRefGoogle Scholar
  23. 23.
    Niendorf T, Krooß P, Batyrsina E, Paulsen A, Frenzel J, Eggeler G, Maier HJ (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys: a new concept for fatigue life extension. Funct Mater Lett 7(4):1450042CrossRefGoogle Scholar
  24. 24.
    Motemani Y, Buenconsejo PJS, Craciunescu C, Ludwig A (2014) High-temperature shape memory effect in Ti–Ta thin films sputter deposited at room temperature. Adv Mater Interfaces 1(3):1400019CrossRefGoogle Scholar
  25. 25.
    Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mat Res 106(4):331–341CrossRefGoogle Scholar
  26. 26.
    Niendorf T, Krooß P, Batyrsina E, Paulsen A, Motemani Y, Buenconsejo PJS, Frenzel J, Eggeler G, Maier HJ (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng A 620:359–366CrossRefGoogle Scholar
  27. 27.
    Niendorf T, Krooß P, Somsen C, Rynko R, Paulsen A, Batyrsina E, Frenzel J, Eggeler G, Maier HJ (2015) Cyclic degradation of titanium-tantalum high-temperature shape memory alloys: the role of dislocation activity and chemical decomposition. Funct Mater Lett. 8(6):1550062CrossRefGoogle Scholar
  28. 28.
    Motemani Y, Kadletz PM, Maier B, Rynko R, Somsen C, Paulsen A, Frenzel J, Schmahl WW, Eggeler G, Ludwig A (2015) Microstructure, shape memory effect and functional stability of Ti67Ta33 thin films. Adv Eng Mater 17(10):1425–1433CrossRefGoogle Scholar
  29. 29.
    Chakraborty T, Rogal J, Drautz R (2015) Martensitic transformation between competing phases in Ti–Ta alloys: a solid-state nudged elastic band study. J Phys Condens Matter 27(11):115401CrossRefGoogle Scholar
  30. 30.
    Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti–Ta alloys. Phys Rev B 94(22):224104CrossRefGoogle Scholar
  31. 31.
    Maier HJ, Karsten E, Paulsen A, Langenkämper D, Decker P, Frenzel J, Somsen C, Ludwig A, Eggeler G, Niendorf T (2017) Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. J Mater Res 32(23):1–9CrossRefGoogle Scholar
  32. 32.
    Kadletz PM (2017) Neutron and X-ray diffraction of Ti–Ta and Co49Ni21Ga30 high-temperature shape-memory-alloys, Ph.D. Thesis, Ludwig-Maximilians-Universität, München. Thesis completed March, 2017Google Scholar
  33. 33.
    Kadletz PM, Motemani Y, Iannotta J, Salomon S, Khare C, Grossmann L, Maier HJ, Ludwig A, Schmahl WW (2018) Crystallographic structure analysis of a Ti–Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150CrossRefGoogle Scholar
  34. 34.
    Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti–Ta-X shape memory alloys. Phys Rev Mater 2(7):073609CrossRefGoogle Scholar
  35. 35.
    Murray JL (1981) The Ta–Ti (tantalum–titanium) system. Bull Alloy Phase Diagr 2(1):62–66CrossRefGoogle Scholar
  36. 36.
    Krywka C, Paulus M, Sternemann C, Volmer M, Remhof A, Nowak G, Nefedov A, Pöter B, Spiegel M, Tolan M (2006) The new diffractometer for surface X-ray diffraction at beamline BL9 of DELTA. J. Synchrotron Radiat 1(13):8–13CrossRefGoogle Scholar
  37. 37.
    Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 1(450):34–41CrossRefGoogle Scholar
  38. 38.
    Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuc. Instrum Methods Phys Res Sect B 3–4(268):334–340CrossRefGoogle Scholar
  39. 39.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  40. 40.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758CrossRefGoogle Scholar
  41. 41.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6(1):15–50CrossRefGoogle Scholar
  43. 43.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  45. 45.
    Janssen, J., Surendralal, S., Lysogorskiy, Y., Todorova, M., Hickel, T., Drautz, R., and Neugebauer, J.: pyiron: an integrated development environment for computational materials science, article in productionGoogle Scholar
  46. 46.
    Methfessel MPAT, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40(6):3616CrossRefGoogle Scholar
  47. 47.
    Baldereschi A (1973) Mean-value point in the Brillouin zone. Phys Rev B 7(12):5212–5215CrossRefGoogle Scholar
  48. 48.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188CrossRefGoogle Scholar
  49. 49.
    Ferrari A, Sangiovanni D, Rogal J, Drautz R First principles characterization of reversible martensitic transformations arXiv:1810.05489
  50. 50.
    Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247CrossRefGoogle Scholar
  51. 51.
    Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71(11):809–824CrossRefGoogle Scholar
  52. 52.
    Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65(3):353CrossRefGoogle Scholar
  53. 53.
    Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Electronic properties of random alloys: special quasirandom structures. Phys Rev B 42(15):9622CrossRefGoogle Scholar
  54. 54.
    von Pezold J, Dick A, Friák M, Neugebauer J (2010) Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: application to Al–Ti. Phys. Rev. B 81(9):094203CrossRefGoogle Scholar
  55. 55.
    Koßmann J, Hammerschmidt T, Maisel S, Müller S, Drautz R (2015) Solubility and ordering of Ti, Ta, Mo and W on the Al sublattice in L12-Co3Al. Intermetallics 64:44–50CrossRefGoogle Scholar
  56. 56.
    van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26(4):539–553CrossRefGoogle Scholar
  57. 57.
    Moruzzi VL, Janak JF, Schwarz K (1988) Calculated thermal properties of metals. Phys Rev B 37(2):790CrossRefGoogle Scholar
  58. 58.
    Debye P (1912) Zur theorie der spezifischen wärmen (On the theory of specific heats). Ann Phys 344(14):789–839 in German CrossRefGoogle Scholar
  59. 59.
    Paulsen A, Frenzel J, Langenkämper D, Rynko R, Kadletz PM, Schmahl WW, Somsen C, Eggeler G A kinetic study on the evolution of martensitic transformation behavior and microstructures in Ti-Ta high temperature shape memory alloys during aging, in this volume (in German)Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Alberto Ferrari
    • 1
    Email author
  • Peter M. Kadletz
    • 2
    • 3
  • Tanmoy Chakraborty
    • 1
    • 4
  • Kunyen Liao
    • 2
    • 5
  • Dennis Langenkämper
    • 5
  • Yahya Motemani
    • 5
  • Alexander Paulsen
    • 5
  • Yury Lysogorskiy
    • 1
  • Jan Frenzel
    • 5
  • Jutta Rogal
    • 1
  • Alfred Ludwig
    • 5
  • Christoph Somsen
    • 5
  • Ralf Drautz
    • 1
  • Wolfgang W. Schmahl
    • 2
  1. 1.Interdisciplinary Centre for Advanced Materials SimulationRuhr-Universität BochumBochumGermany
  2. 2.Applied Crystallography and Materials Science, Department of Earth and Environmental Sciences, Faculty of GeosciencesLudwig-Maximilians-UniversitätMunichGermany
  3. 3.European Spallation Source ESS ERICLundSweden
  4. 4.Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Institut für WerkstoffeRuhr-Universität BochumBochumGermany

Personalised recommendations