Advertisement

Shape Memory and Superelasticity

, Volume 5, Issue 1, pp 125–135 | Cite as

Effects of Sn Addition on NiTi Shape Memory Alloys

  • Avery W. YoungEmail author
  • Tyler Torgerson
  • Nathan A. Ley
  • Keirsten Gomez
  • Othmane Benafan
  • Marcus L. Young
Article
  • 73 Downloads

Abstract

NiTiSn shape memory alloys provide a cost-effective alternative to many NiTi-based low-temperature shape memory alloy systems such as NiTi: Cr, Co, and Nb. To demonstrate the viability of NiTiSn shape memory alloys for low-temperature actuator applications, the NiTiSn alloy system was investigated over the course of four alloy heats (Heats I–IV). The site preference of Sn in near-equiatomic NiTi was examined by substituting Sn for Ni in Heat I and Sn for Ti in Heat II up to 10 at.% Sn. The effects of solution annealing (Heat III) and Ni:Ti ratio adjustments (Heat IV) on the phase transformation behavior and microstructural morphology of NiTiSn shape memory alloys were also assessed.

Keywords

Shape memory Low temperature NiTiSn 

Notes

Acknowledgements

The authors thank the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART). This research was a direct result of the CASMART Student Design Challenge at the International Conference on Shape Memory and Superelastic Technologies (SMST 2017) [34]. The authors acknowledge the permission for SEM access by the UNT’s Materials Research Facility (MRF), and thank D. Scheiman for DSC characterization.

References

  1. 1.
    Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160CrossRefGoogle Scholar
  2. 2.
    Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRefGoogle Scholar
  3. 3.
    Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni 4 Ti 3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50(17):4255–4274CrossRefGoogle Scholar
  4. 4.
    Young ML, Frotscher M, Bei H, Simon T, George EP, Eggeler G (2012) Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates. Int J Mater Res 103(12):1434–1439CrossRefGoogle Scholar
  5. 5.
    Michutta J, Carroll M, Yawny A, Somsen C, Neuking K, Eggeler G (2004) Martensitic phase transformation in Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Mater Sci Eng. A 378(1):152–156CrossRefGoogle Scholar
  6. 6.
    Frenzel J, Zhang Z, Somsen C, Neuking K, Eggeler G (2007) Influence of carbon on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 55(4):1331–1341CrossRefGoogle Scholar
  7. 7.
    Kassab E, Neelakantan L, Frotscher M, Swaminathan S, Maaß B, Rohwerder M, Gomes J, Eggeler G (2014) Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys. Mater Corros 65(1):18–22CrossRefGoogle Scholar
  8. 8.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRefGoogle Scholar
  9. 9.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRefGoogle Scholar
  10. 10.
    Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273:134–148CrossRefGoogle Scholar
  11. 11.
    Manuel MV (2016) Nickel titanium alloys, methods of manufacture thereof and article comprising the same. Google Patents, pp 1–3Google Scholar
  12. 12.
    Eckelmeyer K (1976) The effect of alloying on the shape memory phenomenon in nitinol. Scr Metall 10(8):667–672CrossRefGoogle Scholar
  13. 13.
    Uchil J, Kumara KG, Mahesh KK (2001) Effects of heat treatment temperature and thermal cycling on phase transformations in Ni–Ti–Cr alloy. J Alloy Compd 325(1):210–214CrossRefGoogle Scholar
  14. 14.
    Benafan O, Notardonato WU, Meneghelli BJ, Vaidyanathan R (2013) Design and development of a shape memory alloy activated heat pipe-based thermal switch. Smart Mater Struct 22(10):105017CrossRefGoogle Scholar
  15. 15.
    Piao M, Miyazaki S, Otsuka K, Nishida N (1992) Effects of Nb addition on the microstructure of Ti–Ni alloys. Mater Trans JIM 33(4):337–345CrossRefGoogle Scholar
  16. 16.
    Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231CrossRefGoogle Scholar
  17. 17.
    Zheng YF, Yang F, Meng XL, Cai W, Zhao LC (2004) Microstructure and phase transformation of TiNi alloy with addition of third element Sn. Rare Metal Mater Eng 33(6):215–217Google Scholar
  18. 18.
    Kim J-H, Im Y-M, Noh J-P, Miyazaki S, Nam T-H (2011) Microstructures and martensitic transformation behavior of Ti–Ni–Sn alloys. Scr Mater 65(7):608–610CrossRefGoogle Scholar
  19. 19.
    Kim J-H, Choi H-J, Kim M-S, Miyazaki S, Kim Y-W, Chun BS, Nam T-H (2012) Crystallization and martensitic transformation behavior of Ti–Ni–Sn alloy ribbons. Intermetallics 30:51–56CrossRefGoogle Scholar
  20. 20.
    Choe H-J, Kim J-H, Lee S-H, Noh J-P, Kim Y-W, Miyazaki S, Nam T-H (2013) Microstructure and martensitic transformation behavior of crystallized Ti–36Ni–7Sn (at%) alloy ribbons. J Alloy Compd 577:S195–S199CrossRefGoogle Scholar
  21. 21.
    Choi H-J, Kim J-H, Noh J-P, Miyazaki S, Kim Y-W, Nam T-H (2011) Crystallization behavior and microstructure of Ti–36Ni–7Sn (at.%) alloy ribbons. Scr Mater 65(7):611–614CrossRefGoogle Scholar
  22. 22.
    Tong YX, Guo B, Chen F, Tian B, Li L, Zheng YF, Ma LW, Chung CY (2012) Two-way shape memory effect of TiNiSn alloys developed by martensitic deformation. Mater Sci Eng A 550:434–437CrossRefGoogle Scholar
  23. 23.
    Kim J-H, Jung K-T, Noh J-P, Cho G-B, Miyazaki S, Nam T-H (2013) Martensitic transformation behavior of Ti–Ni–Sn alloys. J Alloy Compd 577:S200–S204CrossRefGoogle Scholar
  24. 24.
    Jang J-Y, Chun S-J, Kim N-S, Cho J-W, Kim J-H, Yeom J-T, Kim J-I, Nam T-H (2013) Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys. Mater Res Bull 48(12):5064–5069CrossRefGoogle Scholar
  25. 25.
    Bozzolo G, Noebe RD, Mosca HO (2005) Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf. J Alloy Compd 389(1):80–94CrossRefGoogle Scholar
  26. 26.
    Singh N, Talapatra A, Junkaew A, Duong T, Gibbons S, Li S, Thawabi H, Olivos E, Arróyave R (2016) Effect of ternary additions to structural properties of NiTi alloys. Comput Mater Sci 112(Part A):347–355CrossRefGoogle Scholar
  27. 27.
    International A (2016) Standard test method for energy dispersive X-ray spectrometer (EDX) analysis of metallic surface condition for gas distribution system components. ASTM International, West Conshohocken, PAGoogle Scholar
  28. 28.
    International A (2016) Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis. ASTM International, West Conshohocken, PAGoogle Scholar
  29. 29.
    Callister WD, Rethwisch DG (2011) Materials science and engineering, vol 5. Wiley, New York, p 5Google Scholar
  30. 30.
    Berche A, Tédenac JC, Fartushna J, Jund P (2016) Calphad assessment of the Ni–Sn–Ti system. Calphad 54:67–75CrossRefGoogle Scholar
  31. 31.
    Douglas JE, Birkel CS, Verma N, Miller VM, Miao M-S, Stucky GD, Pollock TM, Seshadri R (2014) Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications. J Appl Phys 115(4):043720CrossRefGoogle Scholar
  32. 32.
    Romaka VV, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, Falmbigl M, Skryabina N (2013) Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti–Ni–Sn and Ti–Ni–Sb ternary systems. J Solid State Chem 197:103–112CrossRefGoogle Scholar
  33. 33.
    Abujudom DN, Kao MY, Thoma PE, Angst DR (1992) High transformation temperature shape memory alloy. U.S. Patent 5,114,504Google Scholar
  34. 34.
    Benafan O, Brown J, Calkins F, Kumar P, Stebner A, Turner T, Vaidyanathan R, Webster J, Young M (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Avery W. Young
    • 1
    Email author
  • Tyler Torgerson
    • 1
  • Nathan A. Ley
    • 1
  • Keirsten Gomez
    • 1
  • Othmane Benafan
    • 2
  • Marcus L. Young
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Structures and Materials DivisionNASA Glenn Research CenterClevelandUSA

Personalised recommendations