Advertisement

ChemTexts

, 4:9 | Cite as

From the Kissinger equation to model-free kinetics: reaction kinetics of thermally initiated solid-state reactions

  • Henrik Schulz
Lecture Text
  • 135 Downloads

Abstract

Recently the term, “model-free kinetics” has increasingly been used in thermoanalytical studies. It is noteworthy that even without knowledge of the concrete reaction mechanism of a material transformation, “model-free kinetics” can be used to determine relevant kinetic parameters such as activation energy ΔEa, preexponential factor A, and reaction rate constant k. An obvious thought that comes to mind is to combine techniques of the thermal analysis with the classical chemical reaction kinetics. Concerning the investigation of classical reaction kinetics, a series of isothermal experiments is necessary to take the time-to-yield ratio of any chemical reaction into account. Based on an introduced mechanism of the chemical reaction, the reaction rate constant k is determined for a series of temperatures T, i.e. k becomes a function of temperature; k = k(T). Generally, the examined substances are solids (e.g. polymers, plastics) and their thermal conversions are heterogeneous reactions at an interface. Would it, therefore, not be simpler to use non-isothermal procedures of thermal analysis for the kinetic analysis of solid state reactions?

Keywords

Solid-state Non-isothermal kinetics Model-free kinetics Thermal analysis 

Notes

Acknowledgements

I would like to thank PD Dr. Richard Thede, University of Greifswald, for his critical review of the manuscript and the discussion of the basic equation, Eq. (6). I extend my thanks to my daughter Julia Koenig, Cologne Academy of Media Arts, and to Mr. Roger Skarsten, University of Applied Sciences and Arts, Hildesheim, for the translation of the German version into English.

Supplementary material

40828_2018_62_MOESM1_ESM.pdf (438 kb)
Supplementary material 1 (PDF 438 KB)

References

  1. 1.
    Polli HL, Pontes AM, Araujo AS (2005) Application of model-free kinetics to the study of thermal degradation of polycarbonate. J Therm Anal Calorim 79:383–387CrossRefGoogle Scholar
  2. 2.
    Saha B, Maiti AK, Ghoshal AK (2006) Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta 444:46–52CrossRefGoogle Scholar
  3. 3.
    Chowlu A, Reddy PK, Ghoshal AK (2009) Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochim Acta 485:20–25CrossRefGoogle Scholar
  4. 4.
    Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340/341:53–68CrossRefGoogle Scholar
  5. 5.
    Kellner R, Mermet JM, Otto M, Valcárcel M, Widmer HM (2004) Analytical chemistry: a modern approach to analytical science, 2nd edn. Wiley, HobokenGoogle Scholar
  6. 6.
    Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292CrossRefGoogle Scholar
  7. 7.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  8. 8.
    Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 446:1–6CrossRefGoogle Scholar
  9. 9.
    Farias J, Roura P (2014) Exact analytical solution for the Kissinger equation: determination of the peak temperature and general properties of thermally activated transformation. Thermochim Acta 598:51–58CrossRefGoogle Scholar
  10. 10.
    Vyazovkin S (2016) A time to search: finding the meaning of variable activation energy. Phys Chem Chem Phys 18:18643–18656CrossRefGoogle Scholar
  11. 11.
    Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248Google Scholar
  12. 12.
    Bodenstein M (1913) Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z Phys Chem 85:390–421Google Scholar
  13. 13.
    Guldberg CM, Waage P (1879) Über die chemische Affinität. J Prakt Chem 19:69–114CrossRefGoogle Scholar
  14. 14.
    Vyazovkin S, Wight CA (1998) Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem 17(3):407–433CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183CrossRefGoogle Scholar
  16. 16.
    Vyazovkin S, Wight CA (1997) Kinetics in solids. Ann Rev Phys Chem 48:125–149CrossRefGoogle Scholar
  17. 17.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRefGoogle Scholar
  18. 18.
    MacCallum JR, Tanner J (1970) Deviation of rate equations used in thermogravimetry. Nature 225:1127–1128CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S (2002) Is the Kissinger equation applicable to the process that occur on cooling? Macromol Rapid Commun 23:771–775CrossRefGoogle Scholar
  20. 20.
    Friedman HL (1964) J Polym Sci Part C 6:183–195CrossRefGoogle Scholar
  21. 21.
    Doyle CD (1965) Series approximations to the equation of thermogravimetric data. Nature 207(4994):290–291CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S (1997) Advanced isoconversional method. J Therm Anal 49:1493–1499CrossRefGoogle Scholar
  23. 23.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bul Chem Soc Jpn 38(11):1881–1886CrossRefGoogle Scholar
  24. 24.
    Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Standards Phys Chem 70A(6):487–523CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of ArchaeometryUniversity of Applied Sciences and Arts (HAWK)HildesheimGermany

Personalised recommendations