Advertisement

Difference in the Tailpipe Particle Number by Consideration of Sub-23-nm Particles for Different Injection Settings of a GDI Engine

  • P. SchwanzerEmail author
  • H.-P. Rabl
  • S. Loders
  • P. Seifert
  • S. Himmelstoß
  • M. Gaderer
Special Article from the ETH Conference 2018
  • 10 Downloads

Abstract

The purpose of this study was to investigate the characteristic of nanoparticles under consideration of sub-23-nm particles from a 1.8-l direct injection (DI) gasoline engine under stoichiometric air/fuel conditions in the exhaust gas system. For future CO2 challenges, the usage of DI—instead of port fuel injection (PFI)—gasoline engines is unavoidable. Therefore, a state of the art particle management program-particle number (PN) system, the Horiba SPCS (2100) with an integrated CPC (condensation particle counter), was recalibrated from a 50% cutoff (D50%) at 23 nm down to a cutoff at 10 nm and the PCRF (particle concentration reduction factor) for sizes smaller than 23 nm was checked. Two different modal points, out of a representative Real Driving Emission (RDE) cycle, were investigated with both calibrations, D50% = 10 nm and D50% = 23 nm. For these different load points, the fuel pressure (FUP) and the start of injection (SOI) were varied, to represent the difference in the structure and the ratio conc(10 nm)/conc(23 nm) of the nanoparticle emissions. The particle characterization includes the particle number (PN), the particle size distribution (PSD), and the particle mass (PM). The particle number was measured with Horiba SPCS (2100). The particle size distribution was analyzed with a Grimm differential mobility analyzer (DMA) in combination with a Faraday cup electrometer (FCE). Micro Soot and Pegasor were used to determine the PM, and an optical characterization was done with a 120-kV Phillips CM12 transmission electron microscope (TEM). The position of all particle measurement systems was downstream the three-way catalyst (TWC). The results of this investigation showed that a higher injection pressure decreases the PN (without consideration of sub-23-nm particles) in general. The ratio conc(10 nm)/conc(23 nm) was therefore higher, because smaller particles, especially ash particles, were less reduced from the FUP. This means higher FUP tends to a higher ratio. For the SOI, the main reasons of the ratio differences were explained by an encroachment between the injection jet and the piston, the valve and the wall.

Keywords

Particle number GDI DoE 

Abbreviations

BC

black carbon

CO

carbon monoxide

CO2

carbon dioxide

CPC

condensation particle counter

CVS

constant volume sampler

DMA

differential mobility analyzer

DoE

design of experiment

DPF

diesel particulate filter

ECU

electronic control unit

FCE

Faraday cup electrometer

FUP

fuel pressure

GDI

gasoline direct injection

GPF

gasoline particle filter

GRPE

working group on pollution and energy

HC

hydrocarbons

HEPA

high efficiency particulate air

MPI

multiple port injection

NOx

nitrogen oxide

PCRF

particle concentration reduction factor

PM

particulate mass

PMP

particle measurement program

PN

particle number

PSD

particle size distribution

PPS

Pegasor Particle Sensor

RDE

real driving emissions

RF

radio frequency

SOI

start of injection

TEM

trans electron microscope

TWC

three-way catalyst

TP

tailpipe

UNECE

United Nations Economic Commission for Europe

VPR

Volatile Particle Remover

WLTP

Worldwide Light duty Test Procedure

Notes

Compliance with Ethical Standards

The authors declare that they have no competing interests.

References

  1. 1.
    AVL List GmbH: AVL Micro Soot Sensor Applicaton PaperGoogle Scholar
  2. 2.
    AVL Powertrain: CAMEO 3 (R8). Version 3: AVL List GmbHGoogle Scholar
  3. 3.
    Barone, T., Storey, J., Youngquist, A., Szybist, P.: An analysis of direct-injection spark-ignition (DISI) soot morphology. Atmos. Environ. 49, 268–274 (2012).  https://doi.org/10.1016/j.atmosenv.2011.11.047 CrossRefGoogle Scholar
  4. 4.
    Beck, H.; Rothe, D.; Throller, C. (2012): Correlation between Pegasor Particle Sensor and particle number counter application of Pegasor Particle Sensor in heavy duty exhaust. 16 ETH Conference on Combustion Generated Nanoparticles. Online verfügbar unter http://www.nanoparticles.ch/archive/2012_Beck_PR.pdf
  5. 5.
    Chen, L., Liang, Z., Zhang, X., Shuai, S.: Characterizing particulate matter emissions from GDI and PFI vehicles under transient and cold start conditions. Fuel. 189, 131–140 (2017).  https://doi.org/10.1016/j.fuel.2016.10.055 CrossRefGoogle Scholar
  6. 6.
    Dageförde, H. (2015): Untersuchung Innermotorischer Einflussgrößen Auf Die Partikelemission Eines Ottomotors Mit Direkteinspritzung. Berlin: Logos Verlag Berlin (Forschungsberichte Aus Dem Institut Für Kolbenmaschinen Ser, v.1/2015)Google Scholar
  7. 7.
    Eiser, A.; Doerr, J.; Jung, M.; Adam, S. (2011): Der Neue 1,8l TFSI-Motor von Audi. Grundmotor und Thermomanagment. In: MTZ 2011 (06), S. 466–475, zuletzt geprüft am 03.01.2018Google Scholar
  8. 8.
    Gaddam, C., Vander Wal, R.: Physical and chemical characterization of SIDI engine particulates. Combustion and Flame. 160(11), S. 2517–S. 2528 (2013).  https://doi.org/10.1016/j.combustflame.2013.05.025 CrossRefGoogle Scholar
  9. 9.
    Giechaskiel, B., Manfredi, U., Martini, G.: Engine exhaust solid sub-23 nm particles. I. literature survey. SAE Int. J. Fuels Lubr. 7(3), 950–964 (2014).  https://doi.org/10.4271/2014-01-2834 CrossRefGoogle Scholar
  10. 10.
    Giechaskiel, B., Zardini, A., Martini, G.: Particle emission measurements from L-category vehicles. SAE Int. J. Engines. 8(5), (2015).  https://doi.org/10.4271/2015-24-2512
  11. 11.
    Hinds, W.: Aerosol Technology. Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley-Interscience, New York, N.Y (1999)Google Scholar
  12. 12.
    International Organisation for Standardization: Reciprocating internal combustion engines exhaust emission measurement. Part 1: Test-bed measurement systems of gaseous and particulate emissions (ISO 8178-1:2017). https://www.iso.org/standard/64710.html, zuletzt geprüft am 03.01.2018
  13. 13.
    ISO 15900:2009, 2009: Determination of particle size distribution -- differential electrical mobility analysis for aerosol particles. https://www.iso.org/standard/39573.html
  14. 14.
    ISO 27891:2015, (2015): Aerosol particle number concentration -- Calibration of condensation particle counters. https://www.iso.org/standard/44414.html
  15. 15.
    Kittelson D.; Patwardhan U.; Zarling D.; Gladis D.; Watts W. (Hg.) (2013): Real-time measurements of metallic ash emissions from engines. 17th ETH-conference on combustion generated nanoparticles. Zürich, 23–26.6. Center for Diesel ResearchGoogle Scholar
  16. 16.
    Kosola, H.: Pegasor. User manual. Pegasor PPS-plotter (2012)Google Scholar
  17. 17.
    Lee, K. O.; Seong, H.; Sakai, S.; Hageman, M.; Rothamer, D. (2013): Detailed morphological properties of nanoparticles from gasoline direct injection engine combustion of ethanol blends. In: 11th International Conference on Engines & Vehicles, SEP. 15, 2013: SAE International400 Commonwealth Drive, Warrendale, PA, United States (SAE Technical Paper Series)Google Scholar
  18. 18.
    Liati, A.; Schreiber, D.; Panayotis, D.E.; Arroyo Rojas Dasilva, Y.; Spiteri, A. C. (2016): Electron microscopic characterization of soot particulate matter emitted by modern direct injection gasoline engines. In: Combustion and Flame 166, S. 307–315. DOI:  https://doi.org/10.1016/j.combustflame.2016.01.031
  19. 19.
    Price, P.; Stone, R.; OudeNijeweme, D.; Chen, X. et al. (2007): Cold start particulate emissions from a second generation DI gasoline engine. JSAE/SAE International Fuels & Lubricants Meeting, JUL. 23, 2007. SAE Paper: SAE International400 Commonwealth Drive, Warrendale, PA, United States (SAE Technical Paper Series)Google Scholar
  20. 20.
    Swanson, J., Kittelson, D., Watts, W., Gladis, D., Twigg, M.: Influence of storage and release on particle emissions from new and used CRTs. Atmos. Environ. 43(26), 3998–4004 (2009).  https://doi.org/10.1016/j.atmosenv.2009.05.019 CrossRefGoogle Scholar
  21. 21.
    M. Tichy, S. Decker, A. Krammich, D. Riedl, M. Winkler, B.H. Min (2016): Beiträge / 12. Internationales Symposium für Verbrennungsdiagnostik. Spray Development and ECU Calibration using DoE and Opitcal Measurement Methods stationary and dynamic to fulfill Euro 6. Unter Mitarbeit von Sabine Müller. Mainz-Kastel, Mainz-Kastel: AVL DeutschlandGoogle Scholar
  22. 22.
    Wu, Z., Song, C., Lv, G., Pan, S., Li, H.: Morphology, fractal dimension, size and nanostructure of exhaust particles from a spark-ignition direct-injection engine operating at different air–fuel ratios. Fuel. 185, 709–717 (2016).  https://doi.org/10.1016/j.fuel.2016.08.025 CrossRefGoogle Scholar
  23. 23.
    Yamada, H.; Funato, K.; Sakurai, H. (2015): Application of the PMP methodology to the measurement of sub-23 nm solid particles. Calibration procedures, experimental uncertainties, and data correction methods. In: Journal of Aerosol Science 88, S. 58–71. DOI:  https://doi.org/10.1016/j.jaerosci.2015.06.002
  24. 24.
    Yamamoto, K.; Yagasaki, S. (2017): Effect of Soot Size on Particle Filtration and Soot Cake Formation in Diesel Particulate Filter. 21th ETH-Conference on Combustion Generated. Online verfügbar unter http://www.nanoparticles.ch/archive/2017_Yamamoto_PR.pdf, zuletzt geprüft am 31.12.2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ostbayerische Technische Hochschule RegensburgRegensburgGermany
  2. 2.Scale MTRegensburgGermany
  3. 3.Universität RegensburgRegensburgGermany
  4. 4.TUM Campus für Biotechnologie und Nachhaltigkeit StraubingStraubingGermany

Personalised recommendations