Advertisement

Applied Catalysis in the Automotive Industry: Development of a Commercial Diesel Oxidation Catalyst Simulation Model Balanced for the Requirements of an Original Engine Manufacturer. Part 2, CO and HC Chemistry

  • Fredrik BlomgrenEmail author
  • Soran Shwan
  • Lars Carlhammar
  • Staffan Luong
  • Lennart Andersson
  • Miroslawa Milh
Article
  • 15 Downloads

Abstract

Our previously developed model of NOx chemistry over a commercially used diesel oxidation catalyst has been extended by adding CO and HC chemistry. Synthetic gas bench experiments were conducted in order to elucidate mechanisms and provide the experimental foundation necessary for model calibration. Reactions tested and folded into the model include pure gas-phase CO oxidation, water-gas shift, and surface oxidation reactions for CO and HC. The majority of the experiments were performed at a space velocity corresponding to medium load in terms of driving conditions. The complete model was validated against engine test data. For that, it was necessary to assess the aging of the catalyst (in modeling terms translated to precious metal dispersion) used in the engine tests. After assuming a reasonable dispersion using engineering judgment, model validation against engine test data was performed. This showed the ability of the model to predict both trends and time resolved details.

Keywords

Applied catalysis DOC Modeling CO oxidation HC oxidation Correlation NOx-CO-HC Space velocity 

Abbreviations

EATS

Engine aftertreatment system

DOC

diesel oxidation catalyst

HC

hydro carbon (non combusted fuel)

SCR

selective catalytic reduction

SGB

synthetic gas bench

TPD

temperature programmed desorption

Notes

Compliance with Ethical Standards

The authors declare that they have no competing interests.

References

  1. 1.
    Blomgren, F., Shwan, S., Carlhammar, L., Milh, M.: Applied catalysis in the automotive industry exemplified through balancing model accuracy and usability when creating a simulation model of a commercial diesel oxidation catalyst. Part 1, NOx-chemistry. submitted to Emission Control Science and TechnologyGoogle Scholar
  2. 2.
    Voltz, S.E., Morgan, C.R., Liederman, D., Jacob, S.M.: Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 12(4), 294–301 (1973)CrossRefGoogle Scholar
  3. 3.
    Keren, I., Sheintuch, M.: Modeling and analysis of spatiotemporal oscillatory patterns during CO oxidation in the catalytic converter. Chem Eng. Sci. 55(8), 1461–1475 (2000)CrossRefGoogle Scholar
  4. 4.
    Salomons, S., Hayes, R.E., Votsmeier, M., Drochner, A., Vogel, H., Malmberg, S., Gieshoff, J.: On the use of mechanistic CO oxidation models with a platinum monolith catalyst. Appl. Catal. B: Environ. 70(1–4), 305–313 (2007)CrossRefGoogle Scholar
  5. 5.
    Carlsson, P.A., Österlund, L., Thormahlen, P., Palmqvist, A.E.C., Fridell, E., Jansson, J., Skoglundh, M.: A transient in situ FTIR and XANES study of CO oxidation over Pt/AlO catalysts. J. Catal. 226(2), 422–434 (2004)CrossRefGoogle Scholar
  6. 6.
    Langmuir, I.: Part II.—“Heterogeneous reactions”. Chemical reactions on surfaces. Trans. Far. Soc. 17(0), 607–654 (1922)CrossRefGoogle Scholar
  7. 7.
    Schwartz, A., Holbrook, L.L., Wise, H.: Catalytic oxidation studies with platinum and palladium. J. Catal. 21(2), 199–207 (1971)CrossRefGoogle Scholar
  8. 8.
    Ordóñez, S., Bello, L., Sastre, H., Rosal, R., Dı́ez, F.V.: Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Appl. Catal. B Environ. 38(2), 139–149 (2002)CrossRefGoogle Scholar
  9. 9.
    Ma, L., Bart, H., Ning, P., Zhang, A., Wu, G., Zengzang, Z.: Kinetic study of three-way catalyst of automotive exhaust gas: modeling and application. Chem. Eng. J. 155(1–2), 241–247 (2009)CrossRefGoogle Scholar
  10. 10.
    Patterson, M.J., Angove, D.E., Cant, N.W.: The effect of carbon monoxide on the oxidation of four C6 to C8 hydrocarbons over platinum, palladium and rhodium. Appl. Catal. B Environ. 26(1), 47–57 (2000)CrossRefGoogle Scholar
  11. 11.
    Watling, T.C., Ahmadinejad, M., Ţuţuianu, M., Johansson, Å., Paterson, M.A.J.: SAE Int. J.. Eng. 5, 1420–1442 (2012)CrossRefGoogle Scholar
  12. 12.
    Khosravi, M., Sola, C., Abedi, A., Hayes, R.E., Epling, W.S., Votsmeier, M.: Oxidation and selective catalytic reduction of NO by propene over Pt and Pt:Pd diesel oxidation catalysts. Appl. Catal. B Environ. 147, 264–274 (2014)CrossRefGoogle Scholar
  13. 13.
    Karakaya, C., Deutschmann, O.: A simple method for CO chemisorption studies under continuous flow: adsorption and desorption behavior of Pt/Al2O3 catalysts. Appl. Catal. A Gen. 445-446, 221–230 (2012)CrossRefGoogle Scholar
  14. 14.
    Ertl, G., Norton, G.P.R., Rüstig, J.: Phys. Rev. Lett. 49(2), 177–180 (1982)CrossRefGoogle Scholar
  15. 15.
    Ladas, S., Imbihl, R., Ertl, G.: Kinetic oscillations during the catalytic CO oxidation on Pd(110): the role of subsurface oxygen. Surf. Sci. 219(1–2), 88–106 (1989)CrossRefGoogle Scholar
  16. 16.
    Yuranov, I., Kiwi-Minsker, L., Slin’ko, M., Kurkina, E., Tolstunova, E.D., Ranken, A.: Chem. Eng. Sci. 55(15), 2827–2833 (2000)CrossRefGoogle Scholar
  17. 17.
    Gorodetskii, V.V., Matveev, A.V., Kalinkin, A.V., Nieuwenhyys, B.E.: Chem. Sust. Dev. 11, 67–74 (2003)Google Scholar
  18. 18.
    Hendriksen, B.L.M., Bobaru, S.C., Franken, J.W.M.: Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf. Sci. 552(1-3), 229–242 (2004)CrossRefGoogle Scholar
  19. 19.
    Imbihl, R.: Fundamental aspects of heterogeneous catalysis studied by Particle Beams. 265(26), 125–131 (1992)Google Scholar
  20. 20.
    Bzovska, I.S., Mryglod, I.M.: Cond. Mat. Phys. 13, 1–5 (2010)Google Scholar
  21. 21.
    Ramanathan, K., Sharma, C.S.: Kinetic parameters estimation for three way catalyst modeling. Ind. Eng. Chem. Res. 50(17), 9960–9979 (2011)CrossRefGoogle Scholar
  22. 22.
    Fernandes, V.R., Bossche, M.V., Knudsen, J., Farstad, M.H., Gustafson, J., Venvik, H.J., Grönbeck, H., Borg, A.: Reversed hysteresis during CO oxidation over Pd75Ag25(100). ACS Catal. 6(7), 4154–4161 (2016)CrossRefGoogle Scholar
  23. 23.
    Chambers, D.C., Angove, D.E., Cant, N.W.: J. Catal. 204, 11–22 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Volvo Group Trucks Technology (GTT), Advanced Technology & Research, Energy Conversion & Physics, Department BF-40550GothenburgSweden

Personalised recommendations