Applied Catalysis in the Automotive Industry: Development of a Commercial Diesel Oxidation Catalyst Simulation Model Balanced for the Requirements of an Original Engine Manufacturer. Part 1, NOx Chemistry

  • Fredrik BlomgrenEmail author
  • Soran Shwan
  • Lars Carlhammar
  • Miroslawa Milh


Driven by a need for simulations in exhaust aftertreatment system R&D, a simulation model of a commercial diesel oxidation catalyst has been developed. Considering near future legislation demands in which cold starts will be of high importance, focus has been to develop a model which can be used to simulate as many engine operating points as possible and not just those at normal driving conditions. In order to emulate as many operating points as possible, the model has been calibrated and validated against synthetic gas bench tests in which inlet composition, temperature, and space velocity were varied. The model, which is of Langmuir-Hinshelwood type, incorporates three catalytic sites: one representing the precious metal, one NO/NO2 storage site, and one site with a high affinity to oxidation by NO2 with a concomitant NO production. The oxidation of the latter site by NO2 and simultaneous production of NO was found in the experimental data and contradicts the equilibrium thermodynamics of the NO + ½O2 ⇌ NO2 reaction, commonly used to describe the activity of diesel oxidation catalysts. The attitude in most of industry towards simulation models is that they represent a means to an ultimate objective, which is to understand the complete exhaust aftertreatment system. In this paper we present and discuss the performance of our diesel oxidation catalyst simulation model, developed solely using synthetic gas bench data, with this objective in mind.


Applied catalysis DOC Modeling NO oxidation Space velocity 



Pre-exponential factor for reaction j (depends on the rate expression)


active site density of reaction j, m2

\( \overrightarrow{{\mathrm{c}}_{\mathrm{s}}},{\mathrm{c}}_{\mathrm{s},\mathrm{i}} \)

vector and component, respectively, of concentration at catalyst surface, mol/m3


heat capacity of gas, J/(kg K)


hydraulic diameter of channel, m

Di, m

diffusion coefficient of species i in the mixture, m2/s

Ea, j

Activation energy for reaction j, J/mol


friction factor


solid friction of substrate


solid friction of washcoat


heat transfer coefficient, J/(m2 s K)


external heat transfer coefficient, J/(m2 s K)


equilibrium constant for ammonia inhibition

km, i

mass transfer coefficient for trace species i, kg/(m2 s)


molecular weight of species i, kg/mol


Nusselt number for heat transfer


pressure, Pa


species mass rate, kg/(m3 s)


reaction rate for reaction j, mol/(mol-site s)


stoichiometric coefficient of species i for reaction j


surface area per reactor volume, m−1


external surface area per reactor volume, m−1


Sherwood number


time, s


temperature of bulk gas in reactor channels, K


temperature of gas at catalyst surface; solid phase temperature, K


external temperature, K


interstitial velocity, m/s


axial position, m


washcoat thickness, m


enthalpy of reaction j (negative for exothermic reactions), J/m

αk, j

coverage dependence for component k in reaction j


void fraction of reactor

\( \overrightarrow{\uptheta_{\mathrm{s}}},{\uptheta}_{\mathrm{k}} \)

vector and component, respectively, of surface coverage of component k


thermal conductivity of bulk gas, J/(m s K)


thermal conductivity of substrate, J/(m s K)


density of bulk gas in reactor channels, kg/m3


density of gas at catalyst surface, kg/m3


stoichiometric coefficient for coverage i in reaction j


effective heat capacity of reactor, J/(m3 K)

ωg, i

mass fraction in the bulk gas of component i

ωs, i

mass fraction in the washcoat of component i



Engine aftertreatment system


diesel oxidation catalyst


hydro carbon (non-combusted fuel)


selective catalytic reduction


synthetic gas bench


temperature programmed desorption


cells per square inch


Compliance with Ethical Standards

The authors declare that they have no competing interests.

Supplementary material

40825_2019_109_MOESM1_ESM.docx (289 kb)
ESM 1 (DOCX 288 kb)


  1. 1.
    Ertl, G., Knözinger, H., Weitkamp, J.: Environmental Catalysis. Wiley-VCH, Weinheim (1999)CrossRefGoogle Scholar
  2. 2.
    Dieselnet Home Page. (accessed 2016-05-31)
  3. 3.
    Dieselnet Home Page. (accessed 2016-05-31)
  4. 4.
    Dieselnet Home Page. (accessed 2016-05-31)
  5. 5.
    Dieselnet Home Page. (accessed 2016-05-31)
  6. 6.
    California Environmental Protection Agency Home Page, accessed 2016-05-31
  7. 7.
    Voltz, S.E., Morgan, C.R., Liederman, D., Jacob, S.M.: Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 12(4), 294–301 (1973)CrossRefGoogle Scholar
  8. 8.
    Oh, S.H., Cavendish, J.C.: Transients of monolithic catalytic converters: response to step changes in feedstream temperature as related to controlling automobile emissions. Ind. Eng. Chem. Prod. Res. Dev. 21(1), 29–37 (1982)CrossRefGoogle Scholar
  9. 9.
    Wang, T.J., Baek, S.W., Lee, J.H.: Kinetic parameter estimation of a diesel oxidation catalyst under actual vehicle operating conditions. Ind. Eng. Chem. Res. 47(8), 2528–2537 (2008)CrossRefGoogle Scholar
  10. 10.
    Lafossas, F., Matsuda, Y., Mohammadi, A., Morishima, A., Inoue, M., Kalogirou, M., Koltsakis, G., Samaras, Z.: Calibration and validation of a diesel oxidation catalyst model: from synthetic gas testing to driving cycle applications. SAE Int. J. Engines. 4(1), 1586–1606 (2011)CrossRefGoogle Scholar
  11. 11.
    Watling, T., Ahmadinejad, M., Tutuianu, M., Johansson, Å., Paterson, M.A.J.: Development and validation of a Pt-Pd diesel oxidation catalyst model. SAE Int. J. Engines. 5(3), 1420–1442 (2012)CrossRefGoogle Scholar
  12. 12.
    Khosravi, M., Abedi, A., Hayes, R.E., Epling, W.S., Votsmeier, M.: Kinetic modeling of Pt and Pt:Pd diesel oxidation catalysts. Appl. Catal. B. 154-155, 16–26 (2014)CrossRefGoogle Scholar
  13. 13.
    Koop, J., Deutschmann, O.: Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases. Appl. Catal. B. 91(1-2), 47–58 (2009)CrossRefGoogle Scholar
  14. 14.
    Sharma, H., Mhadeshwar, A.: A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC). Appl. Catal. B. 127, 190–204 (2012)CrossRefGoogle Scholar
  15. 15.
    Chan, D., Tischer, S., Heck, J., Diehm, C., Deutschmann, O.: Correlation between catalytic activity and catalytic surface area of a Pt/Al2O3 DOC: an experimental and microkinetic modeling study. Appl. Catal. B. 156-157, 153–165 (2014)CrossRefGoogle Scholar
  16. 16.
    Lundberg, B. Aspects of Efficient Parameter Estimation for Diesel Oxidation Catalysts. Ph.D. Dissertation, Chalmers University of Technology, Göteborg, Sweden, 2015Google Scholar
  17. 17.
    Olsson, L., Westerberg, B., Persson, H., Fridell, E., Skoglundh, M., Andersson, B.A.: Kinetic study of oxygen adsorption/desorption and NO oxidation over Pt/Al2O3 catalysts. J. Phys. Chem. B. 103(47), 10433–10439 (1999)CrossRefGoogle Scholar
  18. 18.
    GT-Suite: Exhaust Aftertreatment Application Manual, Gamma Technologies Inc., 2015Google Scholar
  19. 19.
    Russel, A., Epling, W.: Diesel oxidation catalysts. Catal. Rev. Sci. Eng. 53(4), 337–423 (2011)CrossRefGoogle Scholar
  20. 20.
    Mulla, S.S., Chen, N., Delgass, W.N., Epling, W.S., Ribeiro, F.H.: NO2 inhibits the catalytic reaction of NO and O2 over Pt. Catal. Lett. 100(3-4), 267–270 (2005)CrossRefGoogle Scholar
  21. 21.
    Jiang, Z., Huang, W., Tan, D., Zhai, R., Bao, X.: Surface chemistry of NO and NO2 on the Pt(110)-(1×2) surface: a comparative study. Surf. Sci. 600(21), 4860–4869 (2006)CrossRefGoogle Scholar
  22. 22.
    Olsson, L., Fridell, E.: The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ↔ NO + O2 over Pt/Al2O3 and Pt/BaO/Al2O3. J. Catal. 210(2), 340–353 (2002)CrossRefGoogle Scholar
  23. 23.
    Bhatia, D., McCabe, R.W., Harold, M.P., Balakotaiah, V.: Experimental and kinetic study of NO oxidation on model Pt catalysts. J. Catal. 266(1), 106–119 (2009)CrossRefGoogle Scholar
  24. 24.
    Olsson, L., Persson, H., Fridell, E., Skoglundh, M., Andersson, B.: A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. J. Phys. Chem. B. 105(29), 6895–6906 (2001)CrossRefGoogle Scholar
  25. 25.
    Olsson, L., Fridell, E., Skoglundh, M., Andersson, B.: Mean field modelling of NOx storage on Pt/BaO/Al2O3. Catal. Today. 73(3-4), 263–270 (2002)CrossRefGoogle Scholar
  26. 26.
    Cant, N.W., Patterson, M.J.: The storage of nitrogen oxides on alumina-supported barium oxide. Catal. Today. 73(3-4), 271–278 (2002)CrossRefGoogle Scholar
  27. 27.
    Hodjati, S., Petit, C., Pitchon, V., Kiennemann, A.: Absorption/desorption of NOx process on perovskites—nature and stability of the species formed on BaSnO3. Appl. Catal. B. 27(2), 117–126 (2000)CrossRefGoogle Scholar
  28. 28.
    Weiss, B.M., Iglesia, E.: NO oxidation catalysis on Pt clusters: elementary steps, structural requirements, and synergistic effects of NO2 adsorption sites. J. Phys. Chem. C. 113(30), 13331–13340 (2009)CrossRefGoogle Scholar
  29. 29.
    Weiss, B.M., Artioli, N., Iglesia, E.: Catalytic NO oxidation pathways and redox cycles on dispersed oxides of rhodium and cobalt. ChemCatChem. 4(9), 1397–1404 (2012)CrossRefGoogle Scholar
  30. 30.
    Rankovic, N., Nicolle, A., Da Costa, P.: Detailed kinetic modeling study of NOx oxidation and storage and their interaction over Pt/Ba/Al2O3 monolith catalysts. J. Phys. Chem. C. 114(15), 7102–7111 (2010)CrossRefGoogle Scholar
  31. 31.
    Cao, L., Ratts, J.L., Yezerets, A., Currier, N.W., Caruthers, J.M., Ribeiro, F.H., Delgass, W.N.: Kinetic modeling of NOx storage/reduction on Pt/BaO/Al2O3 monolith catalysts. Ind. Eng. Chem. Res. 47(23), 9006–9017 (2008)CrossRefGoogle Scholar
  32. 32.
    Hauptmann, W., Votsmeier, M., Gieshoff, J., Vogel, H.: Inverse hysteresis during the NO oxidation on Pt under lean conditions. Appl. Catal. B. Environ. 93(1-2), 22–29 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Product Advanced Engineering at Volvo Group Trucks Technology (GTT)GothenburgSweden

Personalised recommendations