Advertisement

Assessment of the Single-Site Kinetic Model for NH3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests

  • Selmi Erim Bozbağ
  • Mutlu Şimşek
  • Onur Demir
  • Deniz Şanlı
  • Barkın Ozener
  • Gokhan Hisar
  • Can ErkeyEmail author
Original Paper
  • 61 Downloads

Abstract

A transient single-site kinetic model consisting of NH3-SCR (selective catalytic reduction) related reactions (NH3 adsorption/desorption, NH3 oxidation, NO oxidation, standard SCR, fast SCR, NO2-SCR, NH4NO3, and N2O formation) on a commercial multi-site Cu-Chabazite washcoated monolith was developed using laboratory scale synthetic gas bench (SGB) data and its potential towards predicting the downstream NOx concentrations was assessed using SGB and dynamometer tests. Kinetic model described the transient and steady-state data obtained for the model development in the SGB well. Single-site nature of the model enabled the prediction of the reactivity of the lower temperature active Cu site much better than the activity associated with higher temperature Cu sites. Validation experiments in the SGB at 185 °C which consisted of varying NH3 and NO2/NOx ratios were very well predicted. The kinetic model was also successful in predicting the instantaneous NOx emissions and cumulative NOx and N2O amount released in real-size SCR reactors during World Harmonic Transient Cycle (WHTC) in the 220–290 °C range. Model was in slight disagreement with measured cumulative NO but was in good in agreement with NO2 for the World Harmonic Stationary Cycle (WHSC) tests in dynamometer and 235–339 °C range, respectively. The developed model was found sufficient for both design and calibration of aftertreatment systems (ATS).

Keywords

Cu-chabazite NH3-SCR Kinetic model Dynamometer WHTC 

Nomenclature

aj

active site density for reaction j, (molsite x m−3 catalyst)

Ak

active site density for coverage k, (mol x m−3 catalyst)

Ai

pre-exponential factor for reaction i

Ci

intraporous concentration of species i (mol x m−3)

Di, m

binary diffusion coefficient of species i in the mixture (m2 x s−1)

De, i

effective diffusivity for species i (m2 x s−1)

DKn, i

Knudsen diffusion coefficient for species i (m2 x s−1)

Dh

hydraulic diameter (m)

dp

washcoat pore size available for gas diffusion (m)

EA,j

activation energy for reaction j (kJ x mol−1)

EA,j,0

activation energy for reaction j at zero coverage (kJ x mol−1)

fwc

solid fraction of washcoat

G

surface area per reactor volume (m−1)

kj

turnover rate constant for the reaction j

km, i

external mass transfer coefficient for species i (kg x m−2 s−1)

Mi

molecular weight of species i (kg x mol−1)

rj

reaction rate for reaction j (mol x s−1 x molsite−1)

R

gas constant (J x mol−1 x K−1)

Ri

species mass rate for generation or consumption (kg x m−3 x s−1)

sij

stoichiometric coefficient of species i for reaction j

Shi

Sherwood number

Vi

diffusion volume for species i (cm3 x mol−1)

v

interstitial velocity (m x s−1)

Greek Letters

α

coverage dependence

δ

washcoat thickness (m)

ε

void fraction of reactor

εw

void fraction of washcoat

ρg

density of bulk gas in reactor channels (kg x m−3)

ρs

density of gas at catalyst surface (kg x m−3)

ωi

intraporous mass fraction of species i

ωg, i

mass fraction of species i in the bulk gas

ωw, i

mass fraction of species i in the gas-solid interface

θk

surface coverage of species k

σkj

stoichiometric coefficient of coverage i in reaction k

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests..

References

  1. 1.
    Dumesic, J.A., Topsøe, N.Y., Topsøe, H., Chen, Y., Slabiak, T.: Kinetics of selective catalytic reduction of nitric oxide by ammonia over Vanadia/Titania. J. Catal. 163(2), 409–417 (1996).  https://doi.org/10.1006/jcat.1996.0342 CrossRefGoogle Scholar
  2. 2.
    Roduit, B., Wokaun, A., Baiker, A.: Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3 over Vanadia/Titania-based catalysts. Ind. Eng. Chem. Res. 37(12), 4577–4590 (1998).  https://doi.org/10.1021/ie980310e CrossRefGoogle Scholar
  3. 3.
    Nova, I., Lietti, L., Tronconi, E., Forzatti, P.: Transient response method applied to the kinetic analysis of the DeNOx–SCR reaction. Chem. Eng. Sci. 56(4), 1229–1237 (2001).  https://doi.org/10.1016/S0009-2509(00)00344-4 CrossRefGoogle Scholar
  4. 4.
    Chatterjee, D., Burkhardt, T., Bandl-Konrad, B., Braun, T., Tronconi, E., Nova, I., Ciardelli, C.: Numerical simulation of ammonia SCR-catalytic converters: model development and application. SAE Technical Paper Series 2005–01-965 (2005)Google Scholar
  5. 5.
    Chatterjee, D., Burkhardt, T., Weibel, M., Nova, I., Grossale, A., Tronconi, E.: Numerical simulation of zeolite- and V-based SCR catalytic converters. SAE Technical Paper Series 2007-01-1136 (2007)Google Scholar
  6. 6.
    Kwak, J.H., Tonkyn, R.G., Kim, D.H., Szanyi, J., Peden, C.H.F.: Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 275(2), 187–190 (2010).  https://doi.org/10.1016/j.jcat.2010.07.031 CrossRefGoogle Scholar
  7. 7.
    Gao, F., Kwak, J.H., Szanyi, J., Peden, C.H.F.: Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNO(x) catalysts. Top. Catal. 56(15–17), 1441–1459 (2013).  https://doi.org/10.1007/s11244-013-0145-8 CrossRefGoogle Scholar
  8. 8.
    Sjovall, H., Olsson, L., Fridell, E., Blint, R.J.: Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—the effect of changing the gas composition. Appl. Catal. B-Environ. 64(3–4), 180–188 (2006).  https://doi.org/10.1016/j.apcatb.2005.12.003 CrossRefGoogle Scholar
  9. 9.
    Cavataio, G., Girard, J., Patterson, J.E., Montreuil, C., Cheng, Y., Lambert, C.K.: Laboratory testing of urea-SCR formulations to meet tier 2 bin 5 emissions. SAE Technical Paper Series 2007-01-1575 (2007)Google Scholar
  10. 10.
    Sullivan, J.A., Cunningham, J., Morris, M.A., Keneavey, K.: Conditions in which Cu-ZSM-5 outperforms supported vanadia catalysts in SCR of NOxby NH3. Appl. Catal. B Environ. 7(1), 137–151 (1995).  https://doi.org/10.1016/0926-3373(95)00031-3 CrossRefGoogle Scholar
  11. 11.
    Metkar, P.S., Harold, M.P., Balakotaiah, V.: Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: sequential and dual layer configurations. Appl. Catal. B-Environ. 111, 67–80 (2012).  https://doi.org/10.1016/j.apcatb.2011.09.019 CrossRefGoogle Scholar
  12. 12.
    Krocher, O., Devadas, M., Elsener, M., Wokaun, A., Soger, N., Pfeifer, M., Demel, Y., Mussmann, L.: Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts. Appl. Catal. B-Environ. 66(3–4), 208–216 (2006).  https://doi.org/10.1016/j.apcatb.2006.03.012 CrossRefGoogle Scholar
  13. 13.
    Kwak, J.H., Tran, D., Burton, S.D., Szanyi, J., Lee, J.H., Peden, C.H.F.: Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 287, 203–209 (2012).  https://doi.org/10.1016/j.jcat.2011.12.025 CrossRefGoogle Scholar
  14. 14.
    Olsson, L., Sjovall, H., Blint, R.J.: A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Appl. Catal. B-Environ. 81(3–4), 203–217 (2008).  https://doi.org/10.1016/j.apcatb.2007.12.011 CrossRefGoogle Scholar
  15. 15.
    Supriyanto, Wijayanti, K., Kumar, A., Joshi, S., Kamasamudram, K., Currier, N.W., Yezerets, A., Olsson, L.: Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. Appl. Catal. B-Environ. 163, 382–392 (2015).  https://doi.org/10.1016/j.apcatb.2014.07.059 CrossRefGoogle Scholar
  16. 16.
    Metkar, P.S., Balakotaiah, V., Harold, M.P.: Experimental and kinetic modeling study of NO oxidation: comparison of Fe and Cu-zeolite catalysts. Catal. Today. 184(1), 115–128 (2012).  https://doi.org/10.1016/j.cattod.2011.11.032 CrossRefGoogle Scholar
  17. 17.
    Joshi, S.Y., Kumar, A., Luo, J., Kamasamudram, K., Currier, N.W., Yezerets, A.: Combined experimental and kinetic modeling study of the bi-modal NOx conversion profile on commercial Cu-SAPO-34 catalyst under standard SCR conditions. Appl. Catal. B Environ. 165, 27–35 (2015).  https://doi.org/10.1016/j.apcatb.2014.09.060 CrossRefGoogle Scholar
  18. 18.
    Chen, H.-Y., Wei, Z., Kollar, M., Gao, F., Wang, Y., Szanyi, J., Peden, C.H.F.: A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. J. Catal. 329, 490–498 (2015).  https://doi.org/10.1016/j.jcat.2015.06.016 CrossRefGoogle Scholar
  19. 19.
    Gao, F., Washton, N.M., Wang, Y., Kollár, M., Szanyi, J., Peden, C.H.F.: Effects of Si/Al ratio on cu/SSZ-13 NH3-SCR catalysts: implications for the active cu species and the roles of Brønsted acidity. J. Catal. 331, 25–38 (2015).  https://doi.org/10.1016/j.jcat.2015.08.004
  20. 20.
    Fan, C., Chen, Z., Pang, L., Ming, S., Zhang, X., Albert, K.B., Liu, P., Chen, H., Li, T.: The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR. Appl. Catal. A Gen. 550, 256–265 (2018).  https://doi.org/10.1016/j.apcata.2017.11.021 CrossRefGoogle Scholar
  21. 21.
    Gao, F., Walter, E.D., Karp, E.M., Luo, J.Y., Tonkyn, R.G., Kwak, J.H., Szanyi, J., Peden, C.H.F.: Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J. Catal. 300, 20–29 (2013).  https://doi.org/10.1016/j.jcat.2012.12.020 CrossRefGoogle Scholar
  22. 22.
    Kwak, J.H., Tran, D., Szanyi, J., Peden, C.H.F., Lee, J.H.: The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13. Catal. Lett. 142(3), 295–301 (2012).  https://doi.org/10.1007/s10562-012-0771-y CrossRefGoogle Scholar
  23. 23.
    Gao, F., Walter, E.D., Kollar, M., Wang, Y.L., Szanyi, J., Peden, C.H.F.: Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 319, 1–14 (2014).  https://doi.org/10.1016/j.jcat.2014.08.010 CrossRefGoogle Scholar
  24. 24.
    Wang, L., Li, W., Qi, G.S., Weng, D.: Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3. J. Catal. 289, 21–29 (2012).  https://doi.org/10.1016/j.jcat.2012.01.012 CrossRefGoogle Scholar
  25. 25.
    Wang, D., Zhang, L., Li, J.H., Kamasamudram, K., Epling, W.S.: NH3-SCR over Cu/SAPO-34—zeolite acidity and Cu structure changes as a function of Cu loading. Catal. Today. 231, 64–74 (2014).  https://doi.org/10.1016/j.cattod.2013.11.040 CrossRefGoogle Scholar
  26. 26.
    Bates, S.A., Verma, A.A., Paolucci, C., Parekh, A.A., Anggara, T., Yezerets, A., Schneider, W.F., Miller, J.T., Delgass, W.N., Ribeiro, F.H.: Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J. Catal. 312, 87–97 (2014).  https://doi.org/10.1016/j.jcat.2014.01.004 CrossRefGoogle Scholar
  27. 27.
    Wang, D., Zhang, L., Kamasamudram, K., Epling, W.S.: In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal. 3(5), 871–881 (2013).  https://doi.org/10.1021/cs300843k CrossRefGoogle Scholar
  28. 28.
    Janssens, T.V.W., Falsig, H., Lundegaard, L.F., Vennestrom, P.N.R., Rasmussen, S.B., Moses, P.G., Giordanino, F., Borfecchia, E., Lomachenko, K.A., Lamberti, C., Bordiga, S., Godiksen, A., Mossin, S., Beato, P.: A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal. 5(5), 2832–2845 (2015).  https://doi.org/10.1021/cs501673g CrossRefGoogle Scholar
  29. 29.
    Paolucci, C., Parekh, A.A., Khurana, I., Di Iorio, J.R., Li, H., Albarracin Caballero, J.D., Shih, A.J., Anggara, T., Delgass, W.N., Miller, J.T., Ribeiro, F.H., Gounder, R., Schneider, W.F.: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138(18), 6028–6048 (2016).  https://doi.org/10.1021/jacs.6b02651 CrossRefGoogle Scholar
  30. 30.
    Giordanino, F., Vennestrom, P.N.R., Lundegaard, L.F., Stappen, F.N., Mossin, S., Beato, P., Bordiga, S., Lamberti, C.: Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios. Dalton Trans. 42(35), 12741–12761 (2013).  https://doi.org/10.1039/c3dt50732g CrossRefGoogle Scholar
  31. 31.
    Borfecchia, E., Lomachenko, K.A., Giordanino, F., Falsig, H., Beato, P., Soldatov, A.V., Bordiga, S., Lamberti, C.: Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 6(1), 548–563 (2015).  https://doi.org/10.1039/c4sc02907k CrossRefGoogle Scholar
  32. 32.
    Ipek, B., Wulfers, M.J., Kim, H., Göltl, F., Hermans, I., Smith, J.P., Booksh, K.S., Brown, C.M., Lobo, R.F.: Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H bond activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catal. 7(7), 4291–4303 (2017).  https://doi.org/10.1021/acscatal.6b03005 CrossRefGoogle Scholar
  33. 33.
    Paolucci, C., Khurana, I., Parekh, A.A., Li, S., Shih, A.J., Li, H., Di Iorio, J.R., Albarracin-Caballero, J.D., Yezerets, A., Miller, J.T., Delgass, W.N., Ribeiro, F.H., Schneider, W.F., Gounder, R.: Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science. 357(6354), 898–903 (2017).  https://doi.org/10.1126/science.aan5630 CrossRefGoogle Scholar
  34. 34.
    Marberger, A., Petrov, A.W., Steiger, P., Elsener, M., Kröcher, O., Nachtegaal, M., Ferri, D.: Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1(3), 221–227 (2018).  https://doi.org/10.1038/s41929-018-0032-6 CrossRefGoogle Scholar
  35. 35.
    Joshi, S.Y., Kumar, A., Luo, J., Kamasamudram, K., Currier, N.W., Yezerets, A.: New insights into the mechanism of NH3-SCR over Cu- and Fe-zeolite catalyst: apparent negative activation energy at high temperature and catalyst unit design consequences. Appl. Catal. B Environ. 226, 565–574 (2018).  https://doi.org/10.1016/j.apcatb.2017.12.076 CrossRefGoogle Scholar
  36. 36.
    Colombo, M., Nova, I., Tronconi, E.: Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment. Catal. Today. 197(1), 243–255 (2012).  https://doi.org/10.1016/j.cattod.2012.09.002 CrossRefGoogle Scholar
  37. 37.
    Olsson, L., Sjovall, H., Blint, R.J.: Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Appl. Catal. B-Environ. 87(3–4), 200–210 (2009).  https://doi.org/10.1016/j.apcatb.2008.09.007 CrossRefGoogle Scholar
  38. 38.
    Sjovall, H., Blint, R.J., Olsson, L.: Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl. Catal. B-Environ. 92(1–2), 138–153 (2009).  https://doi.org/10.1016/j.apcatb.2009.07.020 CrossRefGoogle Scholar
  39. 39.
    Sjövall, H., Blint, R.J., Olsson, L.: Detailed kinetic modeling of NH3 and H2O adsorption, and NH3 oxidation over Cu-ZSM-5. J. Phys. Chem. C. 113, 1393–1405 (2009)CrossRefGoogle Scholar
  40. 40.
    Bendrich, V.M., Scheuerb, A., Hayesa, R.E., Votsmeierb, M.: Unified mechanistic model for standard SCR, fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B Environ. 222, 76–87 (2018)CrossRefGoogle Scholar
  41. 41.
    Olsson, L., Wijayanti, K., Leistner, K., Kumar, A., Joshi, S.Y., Kamasamudram, K., Currier, N.W., Yezerets, A.: A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Appl. Catal. B-Environ. 174, 212–224 (2015).  https://doi.org/10.1016/j.apcatb.2015.02.037 CrossRefGoogle Scholar
  42. 42.
    Daya, R., Desai, C., Vernham, B.: Development and validation of a two-site kinetic model for NH3-SCR over Cu-SSZ-13. Part 1. Detailed global kinetics development based on mechanistic considerations. Emission Contr. Sci. Technol. 4, 143–171 (2018)CrossRefGoogle Scholar
  43. 43.
    Jangjou, Y., Sampara, C.S., Gu, Y., Wang, D., Kumar, A., Li, J., Epling, W.S.: Mechanism-based kinetic modeling of Cu-SSZ-13 sulfation and desulfation for NH3-SCR applications. React. Chem. Eng. (2019).  https://doi.org/10.1039/C8RE00210J
  44. 44.
    Gundlapally, S.R., Papadimitriou, S.R., Wahiduzzaman, S., Gu, T.: Development of ECU capable Grey-box models from detailed models—application to a SCR reactor. Emiss. Control Sci. Technol. 2, 124–136 (2016)CrossRefGoogle Scholar
  45. 45.
    Kannepalli, S., Bürger, A., Tischer, S., Deutschmann, O.: Model-based optimization of ammonia dosing in NH3-SCR of NO x for transient driving cycle: model development and simulation. Emission Contr. Sci. Technol. 3(4), 249–262 (2017).  https://doi.org/10.1007/s40825-017-0072-4 CrossRefGoogle Scholar
  46. 46.
    Gundlapally, S.R., Papadimitriou, I., Wahiduzzaman, S., Gu, T.: Development of ECU capable Grey-box models from detailed models—application to a SCR reactor. Emission Contr. Sci. Technol. 2(3), 124–136 (2016).  https://doi.org/10.1007/s40825-016-0039-x CrossRefGoogle Scholar
  47. 47.
    Han, S., Ye, Q., Cheng, S., Kang, T., Dai, H.: Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR. Catal. Sci. Technol. 7(3), 703–717 (2017).  https://doi.org/10.1039/C6CY02555B CrossRefGoogle Scholar
  48. 48.
    Karadag, H.G., Bozbag, S.E., Şanli, D., Demir, O., Ozener, B., Hisar, G., Erkey, C.: Mass transfer effects in SCR reactor for NOx abatement in diesel engines. In: Dincer, I., Colpan, C.O., Kizilkan, O. (eds.) Exergetic, energetic and environmental dimensions, pp. 961–979. Academic Press (2018)Google Scholar
  49. 49.
    GT-SUITE Exhaust Aftertreatment Application Manual. Gamma Technologies LLC. (2018)Google Scholar
  50. 50.
    Bissett, E.J.: An asymptotic solution for Washcoat pore diffusion in catalytic monoliths. Emission Contr. Sci. Technol. 1(1), 3–16 (2015).  https://doi.org/10.1007/s40825-015-0010-2 CrossRefGoogle Scholar
  51. 51.
    Fuller, E.N., Schettler, P.D., Giddings, J.C.: A new method for prediciton of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58(5), 19–27 (1966)CrossRefGoogle Scholar
  52. 52.
    Bozbag, S.E., Simsek, M., Demir, O., Sanli Yildiz, D., Ozener, H.B., Hisar, G., Erkey, C.: Experimental and theoretical study of NH3 adsorption and desorption over a Cu-chabazite NH3-SCR catalyst. Turk. J. Chem. 42, 1768–1780 (2018)CrossRefGoogle Scholar
  53. 53.
    Alayon, E.M.C., Nachtegaal, M., Bodi, A., Ranocchiari, M., van Bokhoven, J.A.: Bis(mu-oxo) versus mono(mu-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Phys. Chem. Chem. Phys. 17(12), 7681–7693 (2015).  https://doi.org/10.1039/c4cp03226h CrossRefGoogle Scholar
  54. 54.
    Bozbag, S.E., Sot, P., Nachtegaal, M., Ranocchiari, M., van Bokhoven, J.A., Mesters, C.: Direct stepwise oxidation of methane to methanol over Cu–SiO2. ACS Catal. 8(7), 5721–5731 (2018).  https://doi.org/10.1021/acscatal.8b01021 CrossRefGoogle Scholar
  55. 55.
    Luo, J., Gao, F., Kamasamudram, K., Currier, N., Peden, C.H.F., Yezerets, A., et al.: J. Catal. 348, 291–299 (2017).  https://doi.org/10.1016/j.jcat.2017.02.025 CrossRefGoogle Scholar
  56. 56.
    Ruggeri, M., Nova, I., Tronconi, E.: Experimental study of the NO oxidation to NO2 over metal promoted zeolites aimed at the identification of the standard SCR rate determining step. Top. Catal. 56(1–8), 109–113 (2013).  https://doi.org/10.1007/s11244-013-9937-0 CrossRefGoogle Scholar
  57. 57.
    Leistner, K., Xie, K., Kumar, A., Kamasamudram, K., Olsson, L.: Ammonia desorption peaks can be assigned to different copper sites in Cu/SSZ-13. Catal. Lett. 147(8), 1882–1890 (2017).  https://doi.org/10.1007/s10562-017-2083-8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringKoç UniversityIstanbulTurkey
  2. 2.Ford Otosan R&D CenterIstanbulTurkey

Personalised recommendations