Advertisement

Catalytic Carbon Monoxide Oxidation over Potassium-Doped Manganese Dioxide Nanoparticles Synthesized by Spray Drying

  • Kevin Ollegott
  • Niklas Peters
  • Hendrik Antoni
  • Martin MuhlerEmail author
Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • 5 Downloads

Abstract

Manganese oxides are promising catalysts for the oxidation of CO as well as the removal of volatile organic compounds from exhaust gases because of their structural versatility and their ability to reversibly change between various oxidation states. MnO2 nanoparticles doped with Na+ or K+ were synthesized by a semi-continuous precipitation method based on spray drying. Specific surface area, crystallite size, and morphology of these particles were predominantly determined by the spray-drying parameters controlling the quenching of the crystallite growth, whereas thermal stability, reducibility, and phase composition were strongly influenced by the alkali ion doping. Pure α-MnO2 was obtained by K+ doping under alkaline reaction conditions followed by calcination at 450 °C, which revealed a superior catalytic activity in comparison to X-ray amorphous or Mn2O3-containing samples. Thus, the phase composition is identified as a key factor for the catalytic activity of manganese oxides, and it was possible to achieve a similar activation of a K+-doped X-ray amorphous catalyst under reaction conditions resulting in the formation of crystalline α-MnO2. The beneficial effect of K+ doping on the catalytic activity of MnO2 is mainly associated with the stabilizing effect of K+ on the α-MnO2 tunnel structure.

Keywords

Manganese dioxide Spray drying CO oxidation Alkali ion doping 

Notes

Funding information

This research was supported by the German Research Foundation within the Collaborative Research Center SFB 1316/1 “Transient atmospheric pressure plasmas—from plasmas to liquids to solids.” Kevin Ollegott was supported by the Fonds der Chemischen Industrie.

Supplementary material

40825_2019_125_MOESM1_ESM.docx (789 kb)
ESM 1 (DOCX 789 kb)

References

  1. 1.
    Bürgi, T., Bieri, M.: Time-resolved in situ ATR spectroscopy of 2-propanol oxidation over Pd/Al2O3. Evidence for 2-propoxide intermediate. J. Phys. Chem. B. 108(35), 13364–13369 (2004).  https://doi.org/10.1021/jp048187u Google Scholar
  2. 2.
    Su, E.C., Montreuil, C.N., Rothschild, W.G.: Oxygen storage capacity of monolith three-way catalysts. Appl. Catal. 17(1), 75–86 (1985).  https://doi.org/10.1016/S0166-9834(00)82704-9 Google Scholar
  3. 3.
    Liu, K., Wang, A., Zhang, T.: Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2(6), 1165–1178 (2012).  https://doi.org/10.1021/cs200418w Google Scholar
  4. 4.
    Wang, J., Chen, H., Hu, Z., Yao, M., Li, Y.: A review on the Pd-based three-way catalyst. Catal. Rev. 57(1), 79–144 (2014).  https://doi.org/10.1080/01614940.2014.977059 Google Scholar
  5. 5.
    Nibbelke, R.H., Nievergeld, A.J.L., Hoebink, J.H.B.J., Marin, G.B.: Development of a transient kinetic model for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. Appl. Catal. B Environ. 19(3-4), 245–259 (1998).  https://doi.org/10.1016/S0926-3373(98)00076-9 Google Scholar
  6. 6.
    Chatterjee, D., Deutschmann, O., Warnatz, J.: Detailed surface reaction mechanism in a three-way catalyst. Faraday Disc. 119(1), 371–384 (2001).  https://doi.org/10.1039/B101968F Google Scholar
  7. 7.
    Hedjazi, K., Zhang, R., Cui, R., Liu, N., Chen, B.: Synthesis of TiO2 with diverse morphologies as supports of manganese catalysts for CO oxidation. Appl. Petrochem. Res. 6(1), 89–96 (2016).  https://doi.org/10.1007/s13203-015-0141-y Google Scholar
  8. 8.
    Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., Han, Y.-F.: Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal. Today. 131(1-4), 477–482 (2008).  https://doi.org/10.1016/j.cattod.2007.10.061 Google Scholar
  9. 9.
    Liang, S., Teng, F., Bulgan, G., Zong, R., Zhu, Y.: Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C. 112(14), 5307–5315 (2008).  https://doi.org/10.1021/jp0774995 Google Scholar
  10. 10.
    Wagloehner, S., Nitzer-Noski, M., Kureti, S.: Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 259, 492–504 (2015).  https://doi.org/10.1016/j.cej.2014.08.021 Google Scholar
  11. 11.
    Sihaib, Z., Puleo, F., Garcia-Vargas, J.M., Retailleau, L., Descorme, C., Liotta, L.F., Valverde, J.L., Gil, S., Giroir-Fendler, A.: Manganese oxide-based catalysts for toluene oxidation. Appl. Catal. B Environ. 209, 689–700 (2017).  https://doi.org/10.1016/j.apcatb.2017.03.042 Google Scholar
  12. 12.
    Stobbe, E.R., de Boer, B.A., Geus, J.W.: The reduction and oxidation behaviour of manganese oxides. Catal. Today. 47(1-4), 161–167 (1999).  https://doi.org/10.1016/S0920-5861(98)00296-X Google Scholar
  13. 13.
    Liu, Y., Wang, H., Zhu, Y., Wang, X., Liu, X., Li, H., Qian, Y.: Pyrolysis synthesis of magnetic - and -MnO2 nanostructures and the polymorph discrimination. Solid State Commun. 149(37-38), 1514–1518 (2009).  https://doi.org/10.1016/j.ssc.2009.06.008 Google Scholar
  14. 14.
    Liu, Y., Wei, J., Tian, Y., Yan, S.: The structure–property relationship of manganese oxides. Highly efficient removal of methyl orange from aqueous solution. J. Mater. Chem. A. 3(37), 19000–19010 (2015).  https://doi.org/10.1039/C5TA05507E Google Scholar
  15. 15.
    Yin, B., Zhang, S., Jiang, H., Qu, F., Wu, X.: Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A. 3(10), 5722–5729 (2015).  https://doi.org/10.1039/C4TA06943A Google Scholar
  16. 16.
    Feng, Q., Yanagisawa, K., Yamasaki, N.: Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. J. Porous. Mater. 5(2), 153–162 (1998).  https://doi.org/10.1023/A:1009657724306 Google Scholar
  17. 17.
    Muraoka, Y., Chiba, H., Atou, T., Kikuchi, M., Hiraga, K., Syono, Y., Sugiyama, S., Yamamoto, S., Grenier, J.-C.: Preparation of α-MnO2with an open tunnel. J. Solid State Chem. 144(1), 136–142 (1999).  https://doi.org/10.1006/jssc.1999.8133 Google Scholar
  18. 18.
    Frey, K., Iablokov, V., Sáfrán, G., Osán, J., Sajó, I., Szukiewicz, R., Chenakin, S., Kruse, N.: Nanostructured MnOx as highly active catalyst for CO oxidation. J. Catal. 287, 30–36 (2012).  https://doi.org/10.1016/j.jcat.2011.11.014 Google Scholar
  19. 19.
    Iablokov, V., Frey, K., Geszti, O., Kruse, N.: High catalytic activity in CO oxidation over MnOx nanocrystals. Catal. Lett. 134(3-4), 210–216 (2010).  https://doi.org/10.1007/s10562-009-0244-0 Google Scholar
  20. 20.
    Qian, K., Qian, Z., Hua, Q., Jiang, Z., Huang, W.: Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Appl. Surf. Sci. 273, 357–363 (2013).  https://doi.org/10.1016/j.apsusc.2013.02.043 Google Scholar
  21. 21.
    Chang, Y.-f., McCarty, J.G.: Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles. Catal. Today. 30(1-3), 163–170 (1996).  https://doi.org/10.1016/0920-5861(95)00007-0 Google Scholar
  22. 22.
    Sing, K.S.W., Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2016).  https://doi.org/10.1260/0263617053499032 Google Scholar
  23. 23.
    Burgess, C.G.V., Everett, D.H.: The lower closure point in adsorption hysteresis of the capillary condensation type. J. Colloid Interface Sci. 33(4), 611–614 (1970).  https://doi.org/10.1016/0021-9797(70)90014-7 Google Scholar
  24. 24.
    Jiang, J., Kucernak, A.: Electrochemical supercapacitor material based on manganese oxide. Preparation and characterization. Electrochim. Acta. 47(15), 2381–2386 (2002).  https://doi.org/10.1016/S0013-4686(02)00031-2 Google Scholar
  25. 25.
    Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides. Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011).  https://doi.org/10.1016/j.apsusc.2010.10.051 Google Scholar
  26. 26.
    Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T., Kerisit, S.N.: XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016).  https://doi.org/10.1016/j.apsusc.2015.12.159 Google Scholar
  27. 27.
    Wu, Y., Liu, M., Ma, Z., Xing, S.T.: Effect of alkali metal promoters on natural manganese ore catalysts for the complete catalytic oxidation of o-xylene. Catal. Today. 175(1), 196–201 (2011).  https://doi.org/10.1016/j.cattod.2011.04.023 Google Scholar
  28. 28.
    Tepluchin, M., Casapu, M., Boubnov, A., Lichtenberg, H., Wang, D., Kureti, S., Grunwaldt, J.-D.: Fe and Mn-based catalysts supported on γ-Al2O3 for CO oxidation under O2-rich conditions. ChemCatChem. 6(6), 1763–1773 (2014).  https://doi.org/10.1002/cctc.201301040 Google Scholar
  29. 29.
    Zhou, Y., Wang, Z., Liu, C.: Perspective on CO oxidation over Pd-based catalysts. Catal. Sci. Technol. 5(1), 69–81 (2014).  https://doi.org/10.1039/C4CY00983E Google Scholar
  30. 30.
    Al Soubaihi, R., Saoud, K., Dutta, J.: Critical review of low-temperature CO oxidation and hysteresis phenomenon on heterogeneous catalysts. Catalysts. (2018).  https://doi.org/10.3390/catal8120660

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Industrial ChemistryRuhr-University BochumBochumGermany

Personalised recommendations