Advertisement

Comparison of NOx Adsorption/Desorption Behaviors over Pd/CeO2 and Pd/SSZ-13 as Passive NOx Adsorbers for Cold Start Application

  • Yongwoo Kim
  • Sungha Hwang
  • Jaeha Lee
  • YoungSeok Ryou
  • Hyokyoung Lee
  • Chang Hwan Kim
  • Do Heui KimEmail author
Special Issue: 2018 CLEERS Workshop, September 18-20, Ann Arbor, Michigan, United States

Abstract

Passive NOx adsorber (PNA) is one of the promising technologies for reducing NOx emissions from vehicles during cold start periods. Precious metals supported on metal oxide and zeolite have been extensively investigated as PNA materials. Hence, it is worthwhile to compare two typical PNA materials, Pd/CeO2 and Pd/SSZ-13, so as to understand the differences between them. The NOx adsorption/desorption experiments were carried out under varying NO/NO2 ratios, and the result indicated that the NOx adsorption/desorption mechanisms on Pd/CeO2 and Pd/SSZ-13 are completely different. Specifically, NO and NO2 were competitively adsorbed on Pd/SSZ-13, while the NO adsorption on Pd/CeO2 was promoted by NO2. This difference is attributed to different adsorption sites: NOx is adsorbed on the ceria surface in Pd/CeO2, whereas it is adsorbed on atomic Pd2+ sites in Pd/SSZ-13, according to DRIFTS spectra in this study. In addition, the effect of sulfur poisoning was investigated as well. Pd/SSZ-13 showed moderate sulfur tolerance, while Pd/CeO2 completely lost its PNA ability after sulfur aging.

Keywords

Passive NOx adsorber (PNA) Pd/CeO2 Pd/SSZ-13 Cold start Low temperature NO adsorption NO adsorption site 

Notes

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (NRF2016R1A5A1009592).

Compliance with Ethical Standards

The authors declare that they have no competing interests.

References

  1. 1.
    Kim, C.H., Han, H.S.: Status of emission control science and technology in South Korea. Emiss. Control Sci. Technol. 4(1), 1–3 (2018)Google Scholar
  2. 2.
    Vassallo, J.E.: Status of emission control science and technology in Argentina. Emiss. Control Sci. Technol. 4(2), 73–77 (2018)Google Scholar
  3. 3.
    Wallington, T.J., Lambert, C.K., Ruona, W.C.: Diesel vehicles and sustainable mobility in the U.S. Energy Policy. 54, 47–53 (2013)Google Scholar
  4. 4.
    Rexeis, M., Hausberger, S.: Trend of vehicle emission levels until 2020-prognosis based on current vehicle measurements and future emission legislation. Atmos. Environ. 43(31), 4689–4698 (2009)Google Scholar
  5. 5.
    European Parliament and the Council of the European Union: Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information. Off. J. Eur. Union L Ser. 171, 1–16 (2007)Google Scholar
  6. 6.
    Beatrice, C., Rispoli, N., Di Blasio, G., Konstandopoulos, A.G., Papaioannou, E., Imren, A.: Impact of emerging engine and after-treatment technologies for improved fuel efficiency and emission reduction for the future rail diesel engines. Emiss. Control Sci. Technol. 2(2), 99–112 (2016)Google Scholar
  7. 7.
    Fino, D., Russo, N., Saracco, G., Specchia, V.: Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides. J. Catal. 242(1), 38–47 (2006)Google Scholar
  8. 8.
    Li, J., Chang, H., Ma, L., Hao, J., Yang, R.T.: Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catal. Today. 175(1), 147–156 (2011)Google Scholar
  9. 9.
    Yim, S.D., Kim, S.J., Baik, J.H., Nam, I.S., Mok, Y.S., Lee, J.-H., Cho, B.K., Oh, S.H.: Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 43(16), 4856–4863 (2004)Google Scholar
  10. 10.
    Neely, G.D., Sarlashkar, J.V., Mehta, D.: Diesel cold-start emission control research for 2015-2025 LEV III emissions. SAE Int. J. Engines. 6(2), 1009–1020 (2013)Google Scholar
  11. 11.
    Cuelenaere, R., Ligterink, N.: Assessment of the strengths and weaknesses of the new real driving emissions (RDE) test procedure. TNO. 2016, R11227 (2016)Google Scholar
  12. 12.
    Gu, Y., Epling, W.S.: Passive NOx adsorber: an overview of catalyst performance and reaction chemistry. Appl. Catal., A. 570, 1–14 (2019)Google Scholar
  13. 13.
    Lee, J., Theis, J.R., Kyriakidou, E.A.: Vehicle emissions trapping materials: successes, challenges, and the path forward. Appl. Catal., B. 243, 397–414 (2019)Google Scholar
  14. 14.
    Cole, J.A.: System for reducing NOx from mobile source engine exhaust. U.S. Patent. 5, 656,244 (1997)Google Scholar
  15. 15.
    Ryou, Y., Lee, J., Lee, H., Kim, C.H., Kim, D.H.: Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application. Catal. Today. 307, 93–101 (2018)Google Scholar
  16. 16.
    Ji, Y.Y., Bai, S.L., Crocker, M.: Al2O3-based passive NOx adsorbers for low temperature applications. Appl. Catal., B. 170, 283–292 (2015)Google Scholar
  17. 17.
    Ji, Y., Xu, D., Bai, S., Graham, U., Crocker, M., Chen, B., Shi, C., Harris, D., Scapens, D., Darab, J.: Pt-and Pd-promoted CeO2–ZrO2 for passive NOx adsorber applications. Ind. Eng. Chem. Res. 56, 111–125 (2016)Google Scholar
  18. 18.
    Ji, Y.Y., Xu, D.Y., Crocker, M., Theis, J.R., Lambert, C., Bueno-Lopez, A., Harris, D., Scapens, D.: Mn-based mixed oxides for low temperature NOx adsorber applications. Appl. Catal., A. 567, 90–101 (2018)Google Scholar
  19. 19.
    Stakheev, A.Y., Mashkovsky, I.S., Bragina, G.O., Baeva, G.N., Telegina, N.S., Larsen, K.M., Kustov, A.L., Thogersen, J.R.: Mechanism of low-temperature NOx storage for reducing NOx cold start emission. Top. Catal. 59, 931–937 (2016)Google Scholar
  20. 20.
    Theis, J.R.: An assessment of Pt and Pd model catalysts for low temperature NOx adsorption. Catal. Today. 267, 93–109 (2016)Google Scholar
  21. 21.
    Trovarelli, A.: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38(4), 439–520 (1996)Google Scholar
  22. 22.
    Yao, H.C., Yao, Y.F.Y.: Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal. 86(2), 254–265 (1984)Google Scholar
  23. 23.
    Sugiura, M.: Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catal. Surv. Jpn. 7(1), 77–87 (2003)Google Scholar
  24. 24.
    Zheng, Y., Kovarik, L., Engelhard, M.H., Wang, Y., Wang, Y., Gao, F., Szanyi, J.: Low-temperature Pd/zeolite passive NOx adsorbers: structure, performance, and adsorption chemistry. J. Phys. Chem. C. 121(29), 15793–15803 (2017)Google Scholar
  25. 25.
    Porta, A., Pellegrinelli, T., Castoldi, L., Matarrese, R., Morandi, S., Dzwigaj, S., Lietti, L.: Low temperature NOx adsorption study on Pd-promoted zeolites. Top. Catal. 61(18-19), 2021–2034 (2018)Google Scholar
  26. 26.
    Lee, J., Ryou, Y., Cho, S.J., Lee, H., Kim, C.H., Kim, D.H.: Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Appl. Catal., B. 226, 71–82 (2018)Google Scholar
  27. 27.
    Ryou, Y., Lee, J., Lee, H., Kim, C.H., Kim, D.H.: Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catal. Today. 320, 175–180 (2019)Google Scholar
  28. 28.
    Mihai, O., Trandafilović, L., Wentworth, T., Torres, F.F., Olsson, L.: The effect of Si/Al ratio for Pd/BEA and Pd/SSZ-13 used as passive NOx adsorbers. Top. Catal. 61(18-19), 2007–2020 (2018)Google Scholar
  29. 29.
    Chen, H.Y., Collier, J.E., Liu, D.X., Mantarosie, L., Duran-Martin, D., Novak, V., Rajaram, R.R., Thompsett, D.: Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control. Catal. Lett. 146(9), 1706–1711 (2016)Google Scholar
  30. 30.
    Ye, Q., Wang, L.F., Yang, R.T.: Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5. Appl. Catal., A. 427, 24–34 (2012)Google Scholar
  31. 31.
    Fickel, D.W., D’Addio, E., Lauterbach, J.A., Lobo, R.F.: The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal., B. 102(3-4), 441–448 (2011)Google Scholar
  32. 32.
    Ryou, Y., Lee, J., Cho, S.J., Lee, H., Kim, C.H., Kim, D.H.: Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Appl. Catal., B. 212, 140–149 (2017)Google Scholar
  33. 33.
    Khivantsev, K., Jaegers, N.R., Kovarik, L., Hanson, J.C., Tao, F.F., Tang, Y., Zhang, X., Koleva, I.Z., Aleksandrov, H.A., Vayssilov, G.N., Wang, Y., Gao, F., Szanyi, J.: Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers. Angew. Chem. Int. Ed. 57(51), 16672–16677 (2018)Google Scholar
  34. 34.
    Adelman, B.J., Sachtler, W.M.H.: The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts. Appl. Catal., B. 14(1-2), 1–11 (1997)Google Scholar
  35. 35.
    Kaspar, J., Fornasiero, P., Graziani, M.: Use of CeO2-based oxides in the three-way catalysis. Catal. Today. 50(2), 285–298 (1999)Google Scholar
  36. 36.
    Zhou, Y., Lawrence, N.J., Wu, T.-S., Liu, J., Kent, P., Soo, Y.-L., Cheung, C.L.: Pd/CeO2−xNanorod catalysts for CO oxidation: insights into the origin of their regenerative ability at room temperature. ChemCatChem. 6(10), 2937–2946 (2014)Google Scholar
  37. 37.
    Luo, M.F., Hou, Z.Y., Yuan, X.X., Zheng, X.M.: Characterization study of CeO2 supported Pd catalyst for low-temperature carbon monoxide oxidation. Catal. Lett. 50(3/4), 205–209 (1998)Google Scholar
  38. 38.
    Jeong, H., Bae, J., Han, J.W., Lee, H.: Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7(10), 7097–7105 (2017)Google Scholar
  39. 39.
    Stolz, C., Sauvage, A., Massiani, P., Kramer, R.: Solid-state exchange of palladium in zeolite NaX. Appl. Catal., A. 167(1), 113–121 (1998)Google Scholar
  40. 40.
    Setiabudi, A., Makkee, M., Moulijn, J.A.: The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl. Catal., B. 50(3), 185–194 (2004)Google Scholar
  41. 41.
    Twigg, M.V.: Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal., B. 70(1-4), 2–15 (2007)Google Scholar
  42. 42.
    Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59(3-4), 335–345 (2000)Google Scholar
  43. 43.
    Theis, J.R., Lambert, C.K.: Mechanistic assessment of low temperature NOx adsorbers for cold start NOx control on diesel engines. Catal. Today. 320, 181–195 (2019)Google Scholar
  44. 44.
    Filtschew, A., Hess, C.: Unravelling the mechanism of NO and NO 2 storage in ceria: the role of defects and Ce-O surface sites. Appl. Catal., B. 237, 1066–1081 (2018)Google Scholar
  45. 45.
    Azambre, B., Zenboury, L., Koch, A., Weber, J.V.: Adsorption and desorption of NOx on commercial ceria-zirconia (CexZr1−xO2) mixed oxides: a combined TGA, TPD-MS, and DRIFTS study. J. Phys. Chem. C. 113(30), 13287–13299 (2009)Google Scholar
  46. 46.
    Atribak, I., Azambre, B., Lopez, A.B., Garcia-Garcia, A.: Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Appl. Catal., B. 92(1-2), 126–137 (2009)Google Scholar
  47. 47.
    Azambre, B., Atribak, I., Bueno-López, A., García-García, A.: Probing the surface of ceria−zirconia catalysts using NOx adsorption/desorption: a first step toward the investigation of crystallite heterogeneity. J. Phys. Chem. C. 114(31), 13300–13312 (2010)Google Scholar
  48. 48.
    Rico-Pérez, V., Bueno-López, A., Kim, D.J., Ji, Y., Crocker, M.: Pt/Ce x Pr 1−x O 2 ( x = 1 or 0.9) NO x storage–reduction (NSR) catalysts. Appl. Catal., B. 163, 313–322 (2015)Google Scholar
  49. 49.
    Hadjiivanov, K.I.: Identification of neutral and charged NxOySurface species by IR spectroscopy. Catal. Rev. Sci. Eng. 42(1-2), 71–144 (2000)Google Scholar
  50. 50.
    Philipp, S., Drochner, A., Kunert, J., Vogel, H., Theis, J., Lox, E.S.: Investigation of NO adsorption and NO/O2Co-adsorption on NOx-storage-components by DRIFT-spectroscopy. Top. Catal. 30/31, 235–238 (2004)Google Scholar
  51. 51.
    Chakarova, K., Ivanova, E., Hadjiivanov, K., Klissurski, D., Knozinger, H.: Co-ordination chemistry of palladium cations in Pd-H-ZSM-5 as revealed by FTIR spectra of adsorbed and CO-adsorbed probe molecules (CO and NO). PCCP. 6(13), 3702–3709 (2004)Google Scholar
  52. 52.
    Lonyi, F., Solt, H.E., Valyon, J., Decolatti, H., Gutierrez, L.B., Miro, E.: An operando DRIFTS study of the active sites and the active intermediates of the NO-SCR reaction by methane over In,H- and In,Pd,H-zeolite catalysts. Appl. Catal., B. 100(1-2), 133–142 (2010)Google Scholar
  53. 53.
    Shimizu, K.-i., Okada, F., Nakamura, Y., Satsuma, A., Hattori, T.: Mechanism of NO reduction by CH4 in the presence of O2 over Pd–H–mordenite. J. Catal. 195(1), 151–160 (2000)Google Scholar
  54. 54.
    Karjalainen, H., Lassi, U., Rahkamaa-Tolonen, K., Kröger, V., Keiski, R.L.: Thermodynamic equilibrium calculations of sulfur poisoning in Ce–O–S and La–O–S systems. Catal. Today. 100(3-4), 291–295 (2005)Google Scholar
  55. 55.
    Kolli, T., Kanerva, T., Lappalainen, P., Huuhtanen, M., Vippola, M., Kinnunen, T., Kallinen, K., Lepistö, T., Lahtinen, J., Keiski, R.L.: The effect of SO2 and H2O on the activity of Pd/CeO2 and Pd/Zr–CeO2 diesel oxidation catalysts. Top. Catal. 52(13-20), 2025–2028 (2009)Google Scholar
  56. 56.
    Boaro, M., de Leitenburg, C., Dolcetti, G., Trovarelli, A., Graziani, M.: Oxygen storage behavior of ceria–zirconia-based catalysts in the presence of SO2. Top. Catal. 16(17), 299–306 (2001)Google Scholar
  57. 57.
    Luo, T., Gorte, R.J.: Characterization of SO2-poisoned ceria-zirconia mixed oxides. Appl. Catal., B. 53(2), 77–85 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yongwoo Kim
    • 1
  • Sungha Hwang
    • 1
  • Jaeha Lee
    • 1
  • YoungSeok Ryou
    • 1
  • Hyokyoung Lee
    • 2
  • Chang Hwan Kim
    • 2
  • Do Heui Kim
    • 1
    Email author
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Hyundai-Kia Motors R&D CenterHwaseongRepublic of Korea

Personalised recommendations