Emission Control Science and Technology

, Volume 4, Issue 4, pp 240–246 | Cite as

On the Effective Density and Fractal–Like Dimension of Diesel Soot Aggregates as a Function of Mobility Diameter

  • Penelope Baltzopoulou
  • Margaritis Kostoglou
  • Eleni Papaioannou
  • Athanasios G. KonstandopoulosEmail author


A new technique is proposed for the assessment of aggregate morphology based on combined information of aerodynamic and mobility size distributions. Instead of formulating a complex inverse problem having aggregate morphology as unknown, the actual problem is separated to two stages. The aerodynamic distribution is determined directly by the electric low pressure impactor (ELPI) data whereas the morphology is independently assessed by matching the distribution arises from ELPI and from scanning mobility particle sizer (SMPS). The advantage of this approach is that it can estimate different fractal dimension for different aggregate size. The approach is applied to soot aggregates from three different diesel engines. In all cases, a non-monotonic behavior of fractal dimension versus aggregate size is observed. In particular, the fractal dimension initially decreases and then increases (passing through a minimum) as the mobility diameter increases.


Soot aggregate morphology Effective density Fractal dimension Mobility diameter Aerodynamic diameter 


Compliance with Ethical Standards

The authors declare that they have no competing interests.


  1. 1.
    Mamakos, M., Khalek, I., Giannelli, R., Spears, M.: Characterization of combustion aerosol produced by a mini-CAST and treated in a catalytic stripper. Aerosol Sci. Technol. 47(8), 927–936 (2013)CrossRefGoogle Scholar
  2. 2.
    Maricq, M.M., Xu, N.: The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J. Aerosol Sci. 35(10), 1251–1274 (2004)CrossRefGoogle Scholar
  3. 3.
    Skillas, G., Burtscher, H., Siegmann, K., Baltensberger, U.: Density and fractal-like dimension of particles from a laminar diffusion flame. J. Colloid Interface Sci. 217(2), 269–274 (1999)CrossRefGoogle Scholar
  4. 4.
    Burtscher, H., Künzel, S., Hüglin, C.: Characterization of particles in combustion engine exhaust. J. Aerosol Sci. 29(4), 389–396 (1998)CrossRefGoogle Scholar
  5. 5.
    Schleicher, B., Künzel, S., Burtscher, H.: In situ measurement of size and density of submicron aerosol particles. J. Appl. Phys. 78(7), 4416–4422 (1995)CrossRefGoogle Scholar
  6. 6.
    Ristimaki, J., Virtanen, A., Marjamaki, M., Rostedt, A., Keskinen, J.: On-line measurement of size distribution and effective density of submicron aerosol particles. J. Aerosol Sci. 33(11), 1541–1557 (2002)CrossRefGoogle Scholar
  7. 7.
    Virtanen, A., Ristimäki, J., Marjamäki, M., Vaaraslahti, K. et al.: Effective density of diesel exhaust particles as a function of size, SAE Technical Paper 2002-01-0056. (2002)Google Scholar
  8. 8.
    Van Gulijk, C., Marijnissen, J.C.M., Makkee, M., Moulijn, J.A., Schmidt-Ott, A.: Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. J. Aerosol Sci. 35, 633–655 (2003)CrossRefGoogle Scholar
  9. 9.
    Virtanen, A., Ristimaki, J., Keskinen, J.: Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci. Technol. 38(5), 437–446 (2004)CrossRefGoogle Scholar
  10. 10.
    Gini, M.I., Helmis, C., Melas, A.D., Papanastasiou, D., Orfanopoulos, G., Giannakopoulos, K.P., Drossinos, Y., Eleftheriadis, K.: Characterization of carbon fractal-like aggregates by size distribution measurements and theoretical calculations. Aerosol Sci. Technol. 50(2), 133–147 (2016)CrossRefGoogle Scholar
  11. 11.
    Charvet, A., Bau, S., Bémer, D., Thomas, D.: On the importance of density in ELPI data post-treatment. Aerosol Sci. Technol. 49(12), 1263–1270 (2015)CrossRefGoogle Scholar
  12. 12.
    Price, H.D., Stahlmecke, B., Arthur, R., Kaminski, H., Lindermann, J., Däuber, E., Asbach, C., Kuhlbusch, T.A.J., BéruBé, K.A., Jones, T.P.: Comparison of instruments for particle number size distribution measurements in air quality monitoring. J. Aerosol Sci. 76, 48–55 (2014)CrossRefGoogle Scholar
  13. 13.
    Marjamaki, M., Lemmetτy, M., Keskinen, J.: ELPI response and data reduction I: response functions. Aerosol Sci. Technol. 39(7), 575–582 (2005)CrossRefGoogle Scholar
  14. 14.
    Kelly, W.P., McMurry, P.H.: Measurement of particle density by inertial classification of differential mobility analyzer-generated monodisperse aerosol. Aerosol Sci. Technol. 17(3), 199–212 (1992)CrossRefGoogle Scholar
  15. 15.
    Virtanen, A., Ristimaki, J., Vaaraslahti, K.M., Keskinen, J.: Effect of engine load on diesel soot engine. Environ. Sci. Technol. 38(9), 2551–2556 (2004)CrossRefGoogle Scholar
  16. 16.
    Marjamaki, M., Keskinen, J., Chen, D., Pui, D.: Performance evaluation of the electrical low-pressure impactor (ELPI). J. Aerosol Sci. 31(2), 249–261 (2002)CrossRefGoogle Scholar
  17. 17.
    Lemmetty, M., Keskinen, J., Marjamaki, M.: The ELPI response and data reduction II: properties of kernels and data inversion. Aerosol Sci. Technol. 39(7), 583–395 (2005)CrossRefGoogle Scholar
  18. 18.
    Ouf, F.-X., Sillon, P.: Charging efficiency of the electrical low pressure impactor’s corona charger: influence of the fractal morphology of nanoparticle aggregates and uncertainty analysis of experimental results. Aerosol Sci. Technol. 43(7), 685–698 (2009)CrossRefGoogle Scholar
  19. 19.
    Konstandopoulos, A.G., Papaioannou, E.: Update on the science and Technology of Diesel Particulate Filters. Kona Powder Part. J. 26, 36–65 (2008)CrossRefGoogle Scholar
  20. 20.
    Naumann, K.-H.: COSIMA—a computer program simulating the dynamics of fractal aerosols. J. Aerosol Sci. 34(10), 1371–1397 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Aerosol & Particle Technology Laboratory, Chemical Process & Energy Resources InstituteCentre for Research & Technology Hellas (CERTH)Thermi-ThessalonikiGreece
  2. 2.Division of Chemical Technology, Department of ChemistryAristotle University Thessaloniki (AUTH)ThessalonikiGreece
  3. 3.Department of Chemical EngineeringAristotle University Thessaloniki (AUTH)ThessalonikiGreece

Personalised recommendations