Emission Control Science and Technology

, Volume 4, Issue 4, pp 271–278 | Cite as

Study of Brake Wear Particle Emissions of a Minivan on a Chassis Dynamometer

  • Leonidas Chasapidis
  • Theodoros Grigoratos
  • Alexandra Zygogianni
  • Apostolos Tsakis
  • Athanasios G. KonstandopoulosEmail author


Car brakes appear to be a significant atmospheric pollutant source, with a contribution to total non-exhaust traffic-related PM10 emissions being estimated at approximately 55% in big cities and urban environments (Bukowiecki et al., 2009). Brake wear particle emissions of a minivan running on a chassis dynamometer were measured using a custom sampling system, positioned close to the braking system, under different initial speeds (30 km/h and 50 km/h), deceleration rates (0.5 m/s2, 1.5 m/s2, 2.5 m/s2), and ambient temperatures (0 °C, 15 °C and 25 °C). Braking from 50 km/h to full stop, results in 40–100% more particles compared to 30 km/h, depending on the deceleration rate. It was also found that only 9–50% of the total particles emitted, are released during the braking phase and therefore the most significant amount is released on the following acceleration phase. High brake pad temperature results in a bimodal distribution with the first peak being at 1 μm and the second falling at the nanometer scale at 200 nm. The ambient temperature appears to have a negligible effect on the particle generation.


Brake wear particles 



Time at 10th braking


Aerosol and Particle Technology Laboratory


Time at 20th braking


Braking metric (bar s)


Condensation particle counter


Electrical low pressure impactor


Hydraulic brake pressure


Mobile laboratory


On board diagnostics


Particulate matter


Particulate number


Minimum of PN curve from a to b time


CPC concentration


Total particle number collected


Flow rate of CPC (25 cm3/s)


Worldwide harmonized light vehicles test procedure


Analyzer measurement interval (1 s)


Funding Information

The presented work has been funded by the European Commission through FP7 project APT-STEP (Grant Agreement No. 315871).


  1. 1.
    Querol, X., Alastuey, A., Ruiz, C.R., Artiñano, B., Hansson, H.C., Harrison, R.M., Buringh, E., Ten Brink, H.M., Lutz, M., Bruckmann, P., Straeh, P., Schneider, J.: Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38(38), 6547–6555 (2004)CrossRefGoogle Scholar
  2. 2.
    Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A.S.H., Baltensberger, U., Querol, X.: Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 45(37), 6777–6787 (2011)CrossRefGoogle Scholar
  3. 3.
    Denier Van der Gon, H., Jozwicka, M., Cassee, F., Gerlofs-Nijland, M., Gehrig, R., Gustafsson, M., Hulskotte, J., Janssen, N., Johansson, C., Ntziachristos, L., Riediker, M.: The policy relevance of wear emissions from road transport. Now and in the Future. TNO report. TNO-060-UT-2012-00732 (2012)Google Scholar
  4. 4.
    Denier Van der Gon, H., Gerlofs-Nijland, M., Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R., Hulskotte, J., Johansson, C., Jozwicka, M., Keuken, M., Krijgsheld, K., Ntziachristos, L., Riediker, M., Cassee, F.: The policy relevance of Wear emissions from road transport, now and in the future—an international workshop report and consensus statement. J. Air Waste Manage. Assoc. 63(2), 136–149 (2013)CrossRefGoogle Scholar
  5. 5.
    Pant, P., Harrison, R.M.: Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos. Environ. 77, 78–97 (2013)CrossRefGoogle Scholar
  6. 6.
    Amato, F., Cassee, F., Denier van der Gon, H., Gehrig, R., Gustafsson, M., Hafner, W., Harrison, R., Jozwicka, M., Kelly, F., Moreno, T., Prevot, A.S.H., Schaap, M., Sunyer, J., Querol, X.: Urban air quality: the challenge of traffic non-exhaust emissions. J. Hazard. Mater. 275(30), 31–36 (2014) See also: Augsburg, K., Sachse, H., Lugovyy, D., Wirtz, M., Lienerth, P., 2015. Brake Dust Project. Available at Accessed 10 Sept 2018
  7. 7.
    Grigoratos, T., Martini, G.: Brake wear particle emissions: a review. Environ. Sci. Pollut. Res. 22(4), 2491–2504 (2015) See also: Grigoratos, T. and Martini, G., 2014. Non-exhaust traffic related emissions – Brake and tyre wear PM. JRC Scientific and Policy Reports; Available on-line: Accessed 10 Sept 2018
  8. 8.
    Bukowiecki, N., Gehrig, R., Lienemann, P., Hill, M., Figi, R., Buchmann, B., Furger, M., Richard, A., Mohr, C., Weimer, S., Prévôt, A., Baltensperger, U.: PM10 emission factors of abrasion particles from road traffic (APART). Swiss Association of Road and Transportation Experts (VSS). (2009). Accessed 10 Sept 2018
  9. 9.
    Garg, B.D., Cadle, S.H., Mulawa, P.A., Groblicki, P.J.: Brake wear particulate matter emissions. Environ. Sci. Technol. 34(21), 4463–4469 (2000)CrossRefGoogle Scholar
  10. 10.
    Sanders, P.G., Xu, N., Dalka, T.M., Maricq, M.M.: Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ. Sci. Technol. 37(18), 4060–4069 (2003)CrossRefGoogle Scholar
  11. 11.
    Kukutschová, J., Moravec, P., Tomášek, V., Matějka, V., Smolík, j., Schwarz, J., Seidlerová, J., Šafářová, K., Filip, P.: On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ. Pollut. 159(4), 998–1006 (2011)CrossRefGoogle Scholar
  12. 12.
    Harrison, R.M., Jones, A.M., Gietl, J., Yin, J., Green, D.C.: Estimation of the contributions of brake dust, tire wear, and resuspension to non-exhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 46(12), 6523–6529 (2012)CrossRefGoogle Scholar
  13. 13.
    Wik, A., Dave, G.: Occurrence and effects of tire wear particles in the environment - a critical review and an initial risk assessment. Environ. Pollut. 157(1), 1–11 (2009)CrossRefGoogle Scholar
  14. 14.
    Mosleh, M., Blau, P.J., Dumitrescu, D.: Characteristics and morphology of wear particles from laboratory testing of disc brake materials. Wear. 256(11-12), 1128–1134 (2004)CrossRefGoogle Scholar
  15. 15.
    von Uexküll, O., Skerfving, S., Doyle, R., Braungart, M.: Antimony in brake pads: a carcinogenic component? J. Clean. Prod. 13(1), 19–31 (2005)CrossRefGoogle Scholar
  16. 16.
    Iijima, A., Sato, K., Yano, K., Kato, M., Tago, H., Kato, M., Kimura, H., Furuta, N.: Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 41(23), 4908–4919. See also: Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K. and Furuta, N., 2008. Emission factor for antimony in brake abrasion dust as one of the major atmospheric antimony sources. Environmental Science and Technology 42:2937–2942 (2007)CrossRefGoogle Scholar
  17. 17.
    Wahlström, J., Olander, L., Olofsson, U.: Size, shape, and elemental composition of airborne wear particles from disc brake materials. Tribol. Lett. 38(1), 15–24 (2010)CrossRefGoogle Scholar
  18. 18.
    Mathissen, M., Scheer, V., Vogt, R., Benter, T.: Investigation on the potential generation of ultrafine particles from the tire–road interface. Atmos. Environ. 45(34), 6172–6179 (2011)CrossRefGoogle Scholar
  19. 19.
    Perricone, G., Wahlström, J., Olofsson, U.: Towards a test stand for standardized measurements of the brake emissions. Proc Inst Mech Eng D J Automob Eng. 230(11), 1521–1528 (2015). CrossRefGoogle Scholar
  20. 20.
    PMP: Analysis of the WLTP in-use driving behavior database with respect to acceleration and deceleration phases. 37th PMP IWG Meeting, 07-08 October 2015, Brussels. Available at (2015). Accessed 10 Sept 2018
  21. 21.
    PMP: Analysis of the WLTP in-use driving behaviour database with respect to acceleration and deceleration phases*. 39h PMP IWG Meeting, 09-10 March 2016, Brussels. Available at (2016). Accessed 10 Sept 2018
  22. 22.
    Boulter, P.G.: A review of emission factors and models for road vehicle non-exhaust particulate matter. TRL Report PPR065. TRL Limited, Wokingham (2005)Google Scholar
  23. 23.
    Nosco, O., Alemani, M., Olofsson, U.: Temperature effect on emission of airborne wear particles from car brakes. Europe’s Braking Conference and Exhibition 2015, Dresden, Germany, EB2015-TEF-014 (2015)Google Scholar
  24. 24.
    Österle, W., Urban, I.: Friction layers and friction films on PMC brake pads and rotors. Wear. 257(1-2), 215–226. See also: Österle, W., Urban, I., 2006. Third body formation on brake pads and rotors. Tribology International 39:401–408 (2004)CrossRefGoogle Scholar
  25. 25.
    Oberdörster, G., Oberdörster, E., Oberdörster, J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823–839 (2005)CrossRefGoogle Scholar
  26. 26.
    Oostingh, G.J., Papaioannou, E., Chasapidis, L., Akritidis, T., Konstandopoulos, A.G., Duschl, A.: Development of an on-line exposure system to determine freshly produced diesel engine emission-induced cellular effects. Toxicol. in Vitro. 27(6), 1746–1752 (2013)CrossRefGoogle Scholar
  27. 27.
    Gasser, M., Riediker, M., Mueller, L., Perrenoud, A., Blank, F., Gehr, P., Rothen-Rutishauser, B.: Toxic effects of brake wear particles on epithelial lung cells in vitro. Part. Fibre Toxicol. 1–13 (2009).
  28. 28.
    Zhao, J., Lewinski, N., Riediker, M.: Physico-chemical characterization and oxidative reactivity evaluation of aged brake wear particles. Aerosol Sci. Technol. 49(2), 65–74 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Aerosol & Particle Technology Laboratory, Chemical Process and Energy Resources InstituteCentre for Research & Technology Hellas (CERTH)ThessalonikiGreece
  2. 2.European Commission, Joint Research Centre (JRC)Institute for Energy and Transport (IET), Sustainable Transport Unit (STU)IspraItaly
  3. 3.Department of Chemical EngineeringAristotle UniversityThessalonikiGreece

Personalised recommendations