Emission Control Science and Technology

, Volume 4, Issue 4, pp 300–311 | Cite as

Dust Filtration Influence on the Performance of Catalytic Filters for NOx Reduction

  • Giovanny MateusEmail author
  • Martin Meiller
  • Karel Soukup
  • Andreas Hornung


Particle matter and NOx emission are the most significant pollutants of combustion processes, particularly so for the conversion of biomass to energy. Currently, reduction of these pollutants is addressed through particle filters and catalytic processes. Therefore, catalytic activation of filter materials seems to be a practical way to reduce NOx and fine particle emission (PM10) simultaneously at small and medium furnaces. Regularly used methods to achieve this rely on the impregnation process. However, alternatives for materials with low wettability are needed. An alternative developed and discussed in this article consists of simultaneous synthesis of filter and catalyst through hard template sintering, where the catalyst is integrated into the porous medium during the fabrication of the filter. This sintering method provides an integrated catalytic filter. Through this method, up to 2% of catalyst loading was achieved in the synthesis of four catalytic filters. The performance of these new catalysts was evaluated under downscale industrial conditions and compared with an ordinary impregnated catalyst. Finally, a dust aging treatment was applied on the catalysts in order to see the long-term influence of fine dust particles on the NOx conversion.


De-NOx Particle filter SCR catalyst Low temperature Dust emissions Monolithic catalyst 



Activation energy [J]


Adsorption coefficient [−]


Coverage [−]


Face velocity [m/s]


Permeability [m2]


Porosity [−]


Pressure [mBar]


Temperature [°C]


Temperature coefficient [−]


Volumetric flow [L/min]


Molar fraction of species i [−]



The Bavarian State Ministry for Economic Affairs and Media, Energy and Technology is gratefully acknowledged for the financial support of the project.

Compliance with Ethical Standards

The authors declare that they have no competing interests.

Supplementary material

40825_2018_102_MOESM1_ESM.docx (279 kb)
ESM 1 (DOCX 278 kb)


  1. 1.
    Thomas Nussbaumer, Michael Oser: Evaluation of Biomass Combustion based Energy Systems by Cumulative Energy Demand and Energy Yield Coefficient, International Energy Agency IEA Bioenergy Task 32 and Swiss Federal Office of Energy, Verenum press, Version 1.0, Zurich, January 2004Google Scholar
  2. 2.
    JOINT RESEARCH CENTRE, Institute for Prospective Technological Studies. Seville, “Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical Industry” (2002)Google Scholar
  3. 3.
    Heidenreich, S., Nacken, M., Hackel, M., Schaub, G.: Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams. Powder Technol. 180(1), 86–90 (2008)CrossRefGoogle Scholar
  4. 4.
    Nova, I., Tronconi, E.: Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, Berlin (2014)CrossRefGoogle Scholar
  5. 5.
    Narula, C.K., Daw, C.S., Hoard, J.W., Hammer, T.: Materials issues related to catalysts for treatment of diesel exhaust. Int. J. Appl. Ceram. Technol. 2(6), 452–466 (2005)CrossRefGoogle Scholar
  6. 6.
    Liu, G., Gao, P.-X.: A review of NO x storage/reduction catalysts: mechanism, materials and degradation studies. Catal Sci Technol. 1(4), 552–568 (2011)CrossRefGoogle Scholar
  7. 7.
    Nacken, M., Heidenreich, S., Hackel, M., Schaub, G.: Catalytic activation of ceramic filter elements for combined particle separation, NO x removal and VOC total oxidation. Appl. Catal. B Environ. 70(1), 370–376 (2007)CrossRefGoogle Scholar
  8. 8.
    Choi, J.-H., Kim, S.-K., Bak, Y.-C.: The reactivity of V2O5-WO3-TiO2 catalyst supported on a ceramic filter candle for selective reduction of NO. Korean J. Chem. Eng. 18(5), 719–724 (2001)CrossRefGoogle Scholar
  9. 9.
    Vergunst, T., Kapteijn, F., Moulijn, J.A.: Monolithic catalysts—non-uniform active phase distribution by impregnation. Appl. Catal. A Gen. 213(2), 179–187 (2001)CrossRefGoogle Scholar
  10. 10.
    Du, X., Gao, X., Hu, W., Yu, J., Luo, Z., Cen, K.: Catalyst Design Based on DFT Calculations: Metal Oxide Catalysts for Gas Phase NO Reduction. J. Phys. Chem. C. 118(25), 13617–13622 (2014)CrossRefGoogle Scholar
  11. 11.
    Pietrzyk, P., Sojkaab, Z.: DFT modeling and spectroscopic investigations into molecular aspects of DeNO x catalysis. Stud. Surf. Sci. Catal. 171, 27–65 (2007)CrossRefGoogle Scholar
  12. 12.
    Girma, K.B., Lorenz, V., Blaurock, S., Edelmann, F.T.: Coordination Chemistry of Acrylamide. 6 Synthesis and Coordination Compounds of N-Pyrazolylpropanamide-a Versatile Acrylamide-derived Ligand. Z. Anorg. Allg. Chem. 634(2), 267–273 (2008)CrossRefGoogle Scholar
  13. 13.
    Barszcz, B., Głowiak, T., Jezierska, J., Tomkiewicz, A.: Synthesis of new pyrazole-containing binuclear and mononuclear Cu (II) complexes: crystal structure, EPR, magnetic and spectroscopic properties. Polyhedron. 23(8), 1309–1316 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Hua, Z., Zhou, J., Wang, L., Zhao, J., Gong, Y., Wu, W., Ruan, M., Shi, J.: Hierarchical Mesoporous Zeolites: Direct Self-Assembly Synthesis in a Conventional Surfactant Solution by Kinetic Control over the Zeolite Seed Formation. Chem Eur J. 17(51), 14618–14627 (2011)CrossRefGoogle Scholar
  15. 15.
    Lee, Y.-R., Kim, J., Ahn, W.-S.: Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 30(9), 1667–1680 (2013)CrossRefGoogle Scholar
  16. 16.
    MacGillivray, L.R.: Metal-organic frameworks: design and application. In: John Wiley \& Sons (2010)Google Scholar
  17. 17.
    Faust, T.: “Poraver Datenblatt” (2003). [Online]. Available: Accessed: 10–02-2017.Google Scholar
  18. 18.
    Shishkin, A.: Synthesis and functionalization of zeolites for NH3-SCR applications. Chalmers University of Technology (2016).Google Scholar
  19. 19.
    “Filterelement.” [Online]. Available: Accessed: 10–02-2018.Google Scholar
  20. 20.
    Chal, R., Gérardin, C., Bulut, M., van Donk, S.: Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores. ChemCatChem. 3(1), 67–81 (2011)CrossRefGoogle Scholar
  21. 21.
    Davis, M.E., Garcia-Martinez, J., Li, K. (eds.): Mesoporous Zeolites: Preparation, Characterization and Applications. John Wiley \& Sons, Hoboken (2015)Google Scholar
  22. 22.
    Yampolskii, Y., Freeman, B.: Membrane gas separation. ISBN:9780470665626 . Wiley Online Library, (2010).Google Scholar
  23. 23.
    Ramachandran, B., Herman, R.G., Choi, S., Stenger, H.G., Lyman, C.E., Sale, J.W.: Protocol for Laboratory Testing of SCR Catalyst Samples. Catal. Today. 55(3), 281–290 (2007)CrossRefGoogle Scholar
  24. 24.
    DIN 66118 (2016-10). Particle Size Analysis - Size Analysis By Air Classification - Fundamentals. German Institute for Standardisation.(2016).Google Scholar
  25. 25.
    Wegner, Particle Technology Laboratory, Lecture Micro- and NanopaMicro and Nanoparticle Technologie. (2006). Accessed 4 Nov 2018
  26. 26.
    Verrein Deutsche Ingeniur. Guideline 2066 BLATT 11. Particulate matter measurement - Dust measurement in flowing gases. (2006).Google Scholar
  27. 27.
    Boningari, T., Ettireddy, P.R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C.A., Smirniotis, P.G.: Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO 2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J. Catal. 325, 145–155 (2015)CrossRefGoogle Scholar
  28. 28.
    Andana, T., Piumetti, M., Bensaid, S., Veyre, L., Thieuleux, C., Russo, N., Fino, D., Quadrelli, E.A., Pirone, R.: CuO nanoparticles supported by ceria for NOx-assisted soot oxidation: insight into catalytic activity and sintering. Appl. Catal. B Environ. 216, 41–58 (2017)CrossRefGoogle Scholar
  29. 29.
    Boningari, T., Pappas, D.K., Ettireddy, P.R., Kotrba, A., Smirniotis, P.G.: Influence of SiO2 on M/TiO2 (M= Cu, Mn, and Ce) Formulations for Low-Temperature Selective Catalytic Reduction of NO x with NH3: Surface Properties and Key Components in Relation to the Activity of NO x Reduction S1. Ind Eng. Chem. Res. 54(8), 2261–2273 (2015)CrossRefGoogle Scholar
  30. 30.
    Easterling, Vencon G., "The Effects of Ceria Addition on Aging and Sulfation of Lean NOx Traps for Stand Alone and LNT-SCR Applications" Theses and Dissertations--Chemical and Materials Engineering. 17. (2013).Google Scholar
  31. 31.
    Yashnik, S.A., Salnikov, A.V., Vasenin, N.T., Anufrienko, V.F., Ismagilov, Z.R.: Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu 2+. Catal. Today. 197(1), 214–227 (2012)CrossRefGoogle Scholar
  32. 32.
    Zhang, R., Liu, N., Lei, Z., Chen, B.: Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem. Rev. 116(6), 3658–3721 (2016)CrossRefGoogle Scholar
  33. 33.
    Lisi, L., Pirone, R., Russo, G., Stanzione, V.: Cu-ZSM5 based monolith reactors for NO decomposition. Chem. Eng. J. 154(1), 341–347 (2009)CrossRefGoogle Scholar
  34. 34.
    Govender, S., Friedrich, H.B.: Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts. 7(2), 62 (2017)CrossRefGoogle Scholar
  35. 35.
    Hasegawa, G.: Studies on porous monolithic materials prepared via sol-gel processes. Springer Science \& Business Media, Berlin (2012)Google Scholar
  36. 36.
    DIN EN ISO 16890-1:2017-08. Air filters for general ventilation - Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) (ISO 16890-1:2016) (2017).Google Scholar
  37. 37.
    Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically reacting flow: theory and practice. John Wiley \& Sons, Hoboken (2005)Google Scholar
  38. 38.
    Hedayat, N., Du, Y., Ilkhani, H.: Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renewable and Sustainable Energy ReviewsVolume 77, Pages 1221-1239. 2007. Google Scholar
  39. 39.
    Verein Deutsche Ingeneieur. VDI 3677 Blatt 1. “Filtering Separators” (2010).Google Scholar
  40. 40.
    Hauck, C.  Institute for Chemical Technology and Polymer Chemistry, Fakultät für Chemie und Biowissenschaften, Karlsruhe Institute of Technology. “Numerische Simulation von Drei-Wege-Katalysatoren und SCR-Katalysatoren: Untersuchungen zu Einfluss von Alterung und erhӧhtem Druck auf die Aktivität”. PhD Thesis. (2014).Google Scholar
  41. 41.
    Rammelt, T., Torkashvand, B., Hauck, C., Bӧhm, J., Gläser, R., Deutschmann, O.: Nitric Oxide Reduction of Heavy-Duty Diesel Off-Gas by NH3-SCR in Front of the Turbocharger. Emission Control Science Technology.  Issue 4. Pages 1–14. (2017)Google Scholar
  42. 42.
    Bird, R.B.: Transport phenomena. Appl. Mech. Rev. 55(1), R1–R4 (2002)CrossRefGoogle Scholar
  43. 43.
    Günter, T., Pesek, J., Schäfer, K., Abai, A.B., Casapu, M., Deutschmann, O., Grunwaldt, J.-D.: Cu-SSZ-13 as pre-turbine NOx-removal-catalyst: Impact of pressure and catalyst poisons. Appl. Catal. B Environ. 198, 548–557 (2016)CrossRefGoogle Scholar
  44. 44.
    Karadeniz, H., Karakaya, C., Tischer, S., Deutschmann, O.: Mass transfer effects in stagnation flows on a porous catalyst: Water-gas-shift reaction over Rh/Al2O3. Z. Phys. Chem. 229(5), 709–737 (2015)CrossRefGoogle Scholar
  45. 45.
    Ergüdenler, A., Tang, W., Brereton, C.M., Lim, C.J., Grace, J.R., Gennrich, T.J.: Performance of high-temperature fabric filters under gasification and combustion conditions. Sep. Purif. Technol. 11(1), 1–16 (1997)CrossRefGoogle Scholar
  46. 46.
    Smith, W., Giesse, R.: Design for Filtration Equipment. Ind. Eng. Chem. 53(7), 538–545 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Giovanny Mateus
    • 1
    • 2
    Email author
  • Martin Meiller
    • 1
  • Karel Soukup
    • 3
  • Andreas Hornung
    • 1
    • 2
    • 4
  1. 1.Fraunhofer UMSICHT–Institute Branch Sulzbach-RosenbergSulzbach-RosenbergGermany
  2. 2.Faculty of Engineering, Department of Chemical and Biological EngineeringFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  3. 3.Centre for Textural StudiesInstitute of Chemical Process Fundamentals of the CASPrague 6Czech Republic
  4. 4.School of Chemical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations