Advertisement

Emission Control Science and Technology

, Volume 4, Issue 4, pp 321–329 | Cite as

Numerical Investigation of the Effect of Hydrogen Addition on Methane Flame Velocity and Pollutant Emissions Using Several Detailed Reaction Mechanisms

  • Meryem Alaya
  • Ridha Ennetta
  • Rachid Said
Article

Abstract

This research’s basic objective is the study of hydrogen addition effects on pollutant emissions like CO and CO2 and on the laminar velocity of a methane flame considering a detailed chemical kinetics. This numerical study was performed using the calculation code of the gas phase chemical kinetics ChemKin4.0. To do this, the internal combustion engine (ICE) model was used to simulate the CO and CO2 emissions and the flame speed calculation (FSC) model for calculating the laminar velocity for various detailed reaction mechanisms and under different mixing conditions of CH4 + H2 and at equivalence ratio values ranging from 0.6 to 1.4. Results were compared with various experimental data from the literature and very good concordance was observed for several of the detailed mechanisms.

Keywords

Hydrogen Methane Laminar speed Pollutant emissions Chemical kinetics Detailed mechanism 

Notes

Compliance with Ethical Standards

The authors declare that they have no competing interests.

References

  1. 1.
    Boumeddane, B.: Investigations numériques de l’auto-inflammation des mélanges méthane/air en mode HCCI. 19ème Congrès Français de Mécanique, Marseille, France, 24–28 August (2009)Google Scholar
  2. 2.
    Guo, H., Smallwood, G.J., Liu, F., Ju, Y., Gülder, Ö.L.: The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst. 30, 303–311 (2005)CrossRefGoogle Scholar
  3. 3.
    De Simio, L., Gambino, M. & Iannaccone, S.: Use of hydrogen-methane mixtures for heavy duty engines. 12th World INGV conference and exhibition (2010)Google Scholar
  4. 4.
    Navarro, E., Leo, T.J., Corral, R.: CO2 emissions from a spark ignition engine operating on natural gas-hydrogen blends (HCNG). Appl. Energy. 101, 112–120 (2013)CrossRefGoogle Scholar
  5. 5.
    Askari, M.H., Hoseinalipour, S.M., Jazayeri, S.A., Baghsheikhi, M.: Effect of hydrogen addition to natural gas on homogeneous charge compression ignition combustion engines performance and emissions using a thermodynamic simulation. Int. J. Automot. Eng. 1(2), 43–52 (2011)Google Scholar
  6. 6.
    Wall, J.: Effect of hydrogen enriched hydrocarbon combustion on emissions and performance. 17th Annual Natural Philosophy Alliance Conference, Long Beach, CA. 6(2), 1–7 (2010)Google Scholar
  7. 7.
    Nanthagopal, K., Subbarao, R., Elango, T., Baskar, P., Annamalai, K.: Hydrogen enriched compressed natural gas-a futuristic fuel for internal combustion engines. Therm. Sci. 15(4), 1145–1154 (2011)CrossRefGoogle Scholar
  8. 8.
    Wallner, T., Henry, K.N., Peters, R.W.: The effects of blending hydrogen with methane on engine operation, efficiency and emissions. SAE International. In: 2007-01-0474 (2007)Google Scholar
  9. 9.
    Sierens, R.: Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J. Eng. Gas Turbines Power. 122(1), 135–140 (1999)CrossRefGoogle Scholar
  10. 10.
    Nabhani, N. & Sharifi, V.: Investigation on the combustion of hydrocarbon fuel enriched by hydrogen for a cleaner environment. International Conference on Chemical, Environ. Sci. Eng. (ICEEBS'2012, Pattaya, Thailand, July 28–29 (2012)Google Scholar
  11. 11.
    De Sanctis, S., Grimolizzi, L., Ogliari, S. & Galler, D.: Hydrogen enrichment of natural gas: impact on the internal combustion engine emissions. Energy: Production, Distribution and Conservation, Milan, Italy (2006)Google Scholar
  12. 12.
    Gersen, S.: Experimental study of the combustion properties of methane/hydrogen mixtures. PhD thesis, University of Groningen, The Netherlands (2007)Google Scholar
  13. 13.
    Hernández-Pérez, F.E., Groth, C.P.T., Gülder, Ö.L.: Large-eddy simulation of lean hydrogen-methane turbulent premixed flames in the methane-dominated regime. Int. J. Hydrog. Energy. 39(13), 7147–7157 (2014)CrossRefGoogle Scholar
  14. 14.
    Hora, T.S., Agarwal, A.K.: Experimental study of the composition of hydrogen enriched compressed natural gas on engine performance, combustion and emission characteristics. Fuel. 160, 470–478 (2015)CrossRefGoogle Scholar
  15. 15.
    Kee, R.J., et al.: CHEMKIN Release 4.0.2. Reaction Design, San Diego (2005)Google Scholar
  16. 16.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eitneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissiauski, V.V., Qin, Z.: GRIMech 3.0. Retrieved from http://www.me.berkeley.edu/gri_mech
  17. 17.
    Bourque, G., Healy, D., Curran, H.J., Zinner, C., Kalitan, D., de Vries, J., Aul, C. and Petersen, E.: Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. Proc. ASME Turbo Expo. 31051–1066 (2008)Google Scholar
  18. 18.
    Wiliams, F.A.: Chemical-kinetic mechanisms for combustion applications. San Diego mechanism web page, mechanical and aerospace engineering (combustion research), University of California at San Diego. Retrieved from http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html/.Google Scholar
  19. 19.
    Huang, J., Hill, P.G., Bushe, W.K., Munshi, S.R.: Shock initiated ignition in homogeneous methane-hydrogen-air mixtures at high pressure. In. J. Chem. Kinet. 38(4), 221–233 (2006) Retrieved from http://kbspc.mech.ubc.ca/kinetics.html CrossRefGoogle Scholar
  20. 20.
    Heywood, J.B.: Internal combustion engines fundamentals. McGraw-Hill, New York (1988)Google Scholar
  21. 21.
    Matynia, A., Molet, J., Roche, C., Idir, M., Persis, S.D., Pillier, L.: Measurement of OH concentration profiles by laser diagnostics and modeling in high-pressure counterflow premixed methane/air and biogas/air flames. Combust. Flame. 159, 3300e11 (2012)Google Scholar
  22. 22.
    Wang, J.H., Huang, Z.H., Tang, C.L., Miao, H.Y., Wang, X.B.: Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int. J. Hydrog. Energy. 34, 1084e96 (2009)Google Scholar
  23. 23.
    Hu, E.J., Huang, Z.H., He, J.J., Jin, C., Zheng, J.J.: Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. Int. J. Hydrog. Energy. 34, 4876e88 (2009)Google Scholar
  24. 24.
    Burbano, H.J., Amell, A.A., Garcia, J.M.: Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. Int. J. Hydrog. Energy. 33, 3410e5 (2008)CrossRefGoogle Scholar
  25. 25.
    Park, J.W., Oh, C.B.: Flame structure and global flame response to the equivalence ratios of interacting partially premixed methane and hydrogen flames. Int. J. Hydrog. Energy. 37(9), 7877–7888 (2012)CrossRefGoogle Scholar
  26. 26.
    Curran, H. J.: Detailed Chemical Kinetic Mechanisms for Combustion. Proceedings of the European Combustion Meeting (2009)Google Scholar
  27. 27.
    Bovin P.: Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, PhD thesis, Escuela Politécnica Superior, Leganés, Spain (2011)Google Scholar
  28. 28.
    Huang, J.: Natural gas combustion under engine-relevant conditions. PhD Thesis, University of British Columbia, Canada (2006)Google Scholar
  29. 29.
    Ying, Y., Liu, D.: Detailed influences of chemical effects of hydrogen as fuel additive on methane flame. Int. J. Hydrog. Energy. 40(9), 3777–3788 (2015)CrossRefGoogle Scholar
  30. 30.
    Ramaekers, W.J.S., Van Oijen, J.A., de Goey, L.P.H.: A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames. Flow Turbul. Combust. 84(3), 439–458 (2010)Google Scholar
  31. 31.
    Zsély, I.G.: Validation and optimization of detailed combustion mechanisms. COST Training School on the Analysis of Combustion Mechanisms, 4–7 July, Budapest, Hungary (2016)Google Scholar
  32. 32.
    Li, O., Wang, T., Liu, Y., Wang, D.: Experimental study and kinetics modeling of partial oxidation reactions in heavily sooting laminar premixed methane flames. Chem. Eng. J. 207-208, 235–244 (2012)CrossRefGoogle Scholar
  33. 33.
    Olm, C., Zsély, I.G., Varga, T., Curran, H.J., Turányi, T.: Comparison of the performance of several recent syngas combustion mechanisms. Combust. Flame. 162(5), 1793–1812 (2015)Google Scholar
  34. 34.
    Acikgoz, B., Celik, C.: An experimental study on performance and emission characteristics of methane-hydrogen fuelled gasoline engine. Int. J. Hydrog. Energy. 37(23), 18492–18497 (2012)CrossRefGoogle Scholar
  35. 35.
    Kahraman, N., Ceper, B., Akansu, S.O., Aydin, K.: Investigation of combustion characteristics and emissions in spark -ignition engine fuelled with natural gas-hydrogen blends. Int. J. Hydrog. Energy. 34(2), 1026–1034 (2009)CrossRefGoogle Scholar
  36. 36.
    Akansu, S.O., Kahraman, N., Ceper, B.: Experimental study on a spark ignition engine fueled by methane-hydrogen mixtures. Int. J. Hydrog. Energy. 32(17), 4279–4284 (2007)CrossRefGoogle Scholar
  37. 37.
    Tanoue, K., Kido, H., Hamatake, T., Shimada, F.: Improving the turbulent combustion performance of lean methane mixture by hydrogen addition. Seoul 2000 FISITA World Automotive Congress, Seoul, Korea June 12–15 (2000)Google Scholar
  38. 38.
    Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q., Jiang, D.: Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame. 146(1-2), 302–311 (2006)Google Scholar
  39. 39.
    Yu, C., Tang, C., Huang, Z.: Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1-C4 n-alkane-air mixtures: from one step overall assumption to detailed reaction mechanism. Int. J. Hydrog. Energy. 40, 703–718 (2015)CrossRefGoogle Scholar
  40. 40.
    Law, C.K., Kwon, O.C.: Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. Int. J. Hydrog. Energy. 29(8), 867–879 (2004)CrossRefGoogle Scholar
  41. 41.
    Ilbas, M., Crayford, A.P., Yilmaz, I., Bowen, P.J., Sired, N.: Laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study. Int. J. Hydrog. Energy. 31(12), 1768–1779 (2006)CrossRefGoogle Scholar
  42. 42.
    Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaud, P.A., Konnov, A., Battin-Leclerc, F.: Measurement of laminar flame velocity for components of natural gas. Energy Fuels : Am. Chem. Soc. 25(9), 3875–3884 (2011)Google Scholar
  43. 43.
    Haniff, M.S., Melvin, A., Smith, D.B., Williams, A.: The burning velocities of methane and SNG mixtures with air. J. Inst. Energ. 62(453), 229–236 (1989)Google Scholar
  44. 44.
    Boushaki, T., Dhué, Y., Selle, L., Ferret, B., Poinsot, T.: Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis. Int. J. Hydrog. Energy. 37(11), 9412–9422 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ionized and Reactive Media Study (EMIR), Monastir Preparatory Institute for Engineering Studies (IPEIM)University of MonastirMonastirTunisia
  2. 2.Mechanical Modeling, Energy & Materials (M²EM), National School of Engineers of Gabes (ENIG)University of GabesGabèsTunisia

Personalised recommendations