Advertisement

An Investigation on Two Temperature Dual-Phase-Lag Model of Thermoelasticity Under Fuzzy Environment

  • Saroj MandalEmail author
  • Smita Pal Sarkar
  • Tapan Kumar Roy
Original Paper
  • 7 Downloads

Abstract

In this work, the solution of the two temperature dual-lag-phase model in half space under the uncertain thermal loading at boundary has been discussed. A system of fuzzy partial differential equations arise due to study. System of fuzzy partial differential equations are solved by assuming all the partial derivatives as one differentiable. Laplace transformation is used to solve the partial differential equations related to the problem and using the eigen value approach, the system of ordinary differential equations in Laplace transformed domain is solved. The inverse of such Laplace transformations are carried out by the help of numerical computation. The observations based upon the numerical results are illustrated graphically for stress, strain, temperatures and displacement distributions.

Keywords

Thermoelasticity Dual-phase-lag model Vector matrix differential equation Laplace transformation Fuzzy number Fuzzy partial differential equation 

List of symbols

\(\lambda , \mu \)

Lame’s constant

\(\rho \)

Density

t

Time

\(\phi \)

Conductive temperature

\(\theta \)

Thermodynamic temperature

\(\alpha _t\)

Coefficient of linear thermal expansion

\(\sigma _{ij}\)

Component of stress tensor

\(e_{ij}\)

Component of strain tensor

\(u_i\)

Component of displacement

\(\alpha \)

Dimensionless mechanic coupling constant

\(\omega \)

Dimensionless two temperature parameter

\(c_v\)

Specific heat

k

Thermal conductivity

\(\tau _q\)

Phase lag of heat flux

\(\tau _T\)

Phase lag of temperature gradient

\(\tau _0\)

Relaxation time

\(c_0\)

Wave speed

\(\eta \)

Thermal viscosity

a

Two temperature parameter

\(\epsilon \)

Thermoelastic coupling constant

\(\beta \)

\(\alpha _t(3\lambda +2\mu )\)

Notes

Acknowledgements

We want to thank the all the referees for constructive suggestions, information and helpful comments. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

References

  1. 1.
    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)CrossRefGoogle Scholar
  2. 2.
    Sherief, H.H., Dhaliwal, R.S.: Generalized one-dimensional thermal-shock problem for small times. J. Therm. Stresses 4(3–4), 407–420 (1981)CrossRefGoogle Scholar
  3. 3.
    Sherief, H.H.: On uniqueness and stability in generalized thermoelasticity. Q. Appl. Math. 44(4), 773–778 (1987)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)CrossRefGoogle Scholar
  5. 5.
    Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.016 CrossRefGoogle Scholar
  6. 6.
    Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity: closed-form solutions. J. Therm. Stresses 16(4), 473–498 (1993).  https://doi.org/10.1080/01495739308946241 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Green, A., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Green, A., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bagri, A., Eslami, M.: Generalized coupled thermoelasticity of disks based on the Lord–Shulman model. J. Therm. Stresses 27(8), 691–704 (2004)CrossRefGoogle Scholar
  10. 10.
    Das, N., Das, S., Das, B.: Eigenvalue approach to thermoelasticity. J. Therm. Stresses 6(1), 35–43 (1983)CrossRefGoogle Scholar
  11. 11.
    Lahiri, A., Das, N., Sarkar, S., Das, M.: Matrix method of solution of coupled differential equations and its applications in generalized thermoelasticity. Bull. Cal. Math. Soc 101(6), 571–590 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117, 8–16 (1995).  https://doi.org/10.1115/1.2822329 CrossRefGoogle Scholar
  13. 13.
    Quintanilla, R., Jordan, P.: A note on the two temperature theory with dual-phase-lag delay: some exact solutions. Mech. Res. Commun. 36(7), 796–803 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, P.J., Williams, W.O.: A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP 19(6), 969–970 (1968)CrossRefGoogle Scholar
  15. 15.
    Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP 20(1), 107–112 (1969)CrossRefGoogle Scholar
  16. 16.
    Youssef, H.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71(3), 383–390 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Youssef, H .M., Al-Harby, A .H.: State-space approach of two-temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading. Arch. Appl. Mech. 77(9), 675–687 (2007).  https://doi.org/10.1007/s00419-007-0120-6 CrossRefzbMATHGoogle Scholar
  18. 18.
    Sur, A., Kanoria, M.: Finite thermal wave propagation in a half space due to variable thermal loading. Appl. Appl. Math. Int. J. 9, 94–120 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zadeh, L.: Fuzzy  sets.  Inf. Control 8(3),  338–353 (1965).  https://doi.org/10.1016/S0019-9958(65)90241-X CrossRefzbMATHGoogle Scholar
  20. 20.
    Dubois, D .J.: Fuzzy Sets and Systems: Theory and Applications, vol. 144. Academic press, London (1980)zbMATHGoogle Scholar
  21. 21.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst. 8(3), 225–233 (1982)CrossRefGoogle Scholar
  22. 22.
    Guang-Quan, Z.: Fuzzy continuous function and its properties. Fuzzy Sets Syst. 43(2), 159–171 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Buckley, J.J., Feuring, T.: Fuzzy differential equations. Fuzzy Sets Syst. 110(1), 43–54 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Buckley, J.J., Feuring, T.: Introduction to fuzzy partial differential equations. Fuzzy Sets Syst. 105(2), 241–248 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mikaeilvand, N., Khakrangin, S.: Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl. 21(1), 307–312 (2012).  https://doi.org/10.1007/s00521-012-0901-x CrossRefGoogle Scholar
  26. 26.
    Tomasiello, S.: Some remarks on a new dq-based method for solving a class of Volterra integro-differential equations. Appl. Math. Comput. 219(1), 399–407 (2012).  https://doi.org/10.1016/j.amc.2012.06.031. towards a Computational Interpretation of Physical TheoriesMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Macías-Díaz, J., Tomasiello, S.: A differential quadrature-based approach à la picard for systems of partial differential equations associated with fuzzy differential equations. J. Comput. Appl. Math. 299, 15–23 (2016).  https://doi.org/10.1016/j.cam.2015.08.009. recent Advances in Numerical Methods for Systems of Partial Differential EquationsMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012).  https://doi.org/10.1016/j.fss.2010.11.007 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Youssef, H.M., Al-Lehaibi, E.A.: State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. Int. J. Solids Struct. 44(5), 1550–1562 (2007)CrossRefGoogle Scholar
  30. 30.
    Biazar, J., Eslami, M.: Homotopy perturbation method for systems of partial differential equations. Comput. Math. Appl. 62, 225–234 (2011).  https://doi.org/10.1016/j.camwa.2011.04.070 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wazwaz, A.-M.: The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 54(7), 926–932 (2007).  https://doi.org/10.1016/j.camwa.2006.12.038. variational Iteration Method for Nonlinear ProblemsMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of MathematicsSitananda CollegeNandigram, Purba MedinipurIndia
  2. 2.Department of MathematicsIIESTShibpur, HowrahIndia

Personalised recommendations