Advertisement

Capturing the Transient Features of Double Diffusive Thin Film Flow of a Second Grade Fluid Through a Porous Medium

  • Mehari Fentahun Endalew
  • Subharthi SarkarEmail author
Original Paper
  • 14 Downloads

Abstract

The transient features of double-diffusive natural convection thin film flow of a second grade fluid past an inclined plate embedded in a porous medium has been captured. Laplace transform technique combined with INVLAP subroutine of MATLAB is employed to solve the governing equations. The numerical values of all fluid flow characteristics are demonstrated graphically for different values of pertinent flow parameters. Furthermore, the time bound effects of the flow parameters influencing unsteady heat and mass transfer thin film flow of a fluid of second grade are revealed and supported with physical interpretations. We have found that the influence of thermal and solutal buoyancy forces grow with respect to time while the effects of thermal and solutal diffusion diminish with time. Also, the effect of second grade parameter becomes more pronounced with the passage of time. Researchers are welcome to validate the novel results presented in this paper through experiments which may find use in the upgraded design of mechanical systems involving second grade thin film flow in a way that supports better heat and mass transfer.

Keywords

Unsteady flow Thin film Second grade fluid Porous medium Heat and mass transfer 

List of Symbols

\( A_{1} \), \( A_{2} \)

Rivlin–Ericksen tensors

\( P \)

Fluid pressure

\( I \)

Identity tensor

\( C_{p} \)

Specific heat capacity

\( G_{r} \)

Thermal Grashof number

\( G_{c} \)

Solutal Grashof number

\( g \)

Gravitational accleration

\( K \)

Permeability of medium

\( P_{r} \)

Prandtl number

\( S_{c} \)

Schmidt number

D

Chemical molecular diffusivity

\( T^{\prime} \)

Dimensional temperature

\( T \)

Dimensionless temperature

\( T_{w}^{'} \)

Constant plate temperature

\( T_{\infty }^{'} \)

Temperature of free stream

\( \bar{T} \)

Transformed temperature

C

Dimensionless solutal concentration

\( C^{\prime} \)

Dimensional solutal concentration

\( C_{w}^{'} \)

Solutal concentration at the plate

\( C_{\infty }^{'} \)

Solutal concentration at free stream

\( \bar{C} \)

Transformed concentration

\( Sh_{0} \)

Sherwood number at \( y = 0 \)

\( Sh_{1} \)

Sherwood number at \( y = 1 \)

\( Nu_{0} \)

Nusselt number at \( y = 0 \)

\( Nu_{1} \)

Nusselt number at \( y = 1 \)

\( u' \)

Dimensional fluid velocity

\( u \)

Dimensionless fluid velocity

\( \bar{u} \)

Transformed velocity

\( t' \)

Dimensional time

\( t \)

Dimensionless time

Greek Symbols

\( \beta^{*} \)

Expansion coefficient for mass transfer

\( \beta \)

Expansion coefficient for heat transfer

\( \kappa \)

Thermal conductivity of the fluid

\( \nu \)

Kinematic viscosity

\( \rho \)

Density of the fluid

\( \theta \)

Inclination angle of the plate

\( \phi ' \)

Dimensional porosity parameter

\( \phi \)

Dimensionless porosity parameter

\( \mu \)

Dynamic viscosity

\( \alpha \)

Second grade parameter

\( \delta \)

Thin film thickness

\( \alpha_{1} ,\;\alpha_{2} \)

Material constants of second grade

\( \tau_{0} \)

Skin friction at \( y = 0 \)

\( \tau \)

Cauchy stress tensor

Notes

References

  1. 1.
    Rivlin, R.S., Ericksen, J.L.: Stress deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer, Berlin (2013)Google Scholar
  3. 3.
    Owens, R., Phillips, T.: Computational Rheology. Imperial College Press, London (2002)CrossRefGoogle Scholar
  4. 4.
    Rajagopal, K.R.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Nonlinear Mech. 17(5–6), 369–373 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Teipel, I.: The impulsive motion of a flat plate in a viscoelastic fluid. Acta Mech. 39(3–4), 277–279 (1981)CrossRefGoogle Scholar
  6. 6.
    Yao, Y., Liu, Y.: Some unsteady flows of a second grade fluid over a plane wall. Nonlinear Anal. Real World Appl. 11(5), 4442–4450 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Erdoğan, M.E., Imrak, C.E.: On some unsteady flows of a non-Newtonian fluid. Appl. Math. Model. 31(2), 170–180 (2007)CrossRefGoogle Scholar
  8. 8.
    Fetecau, C., Fetecau, C.: Starting solutions for some unsteady unidirectional flows of a second grade fluid. Int. J. Eng. Sci. 43(10), 781–789 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fetecau, C., Hayat, T., Fetecau, C., Ali, N.: Unsteady flow of a second grade fluid between two side walls perpendicular to a plate. Nonlinear Anal. Real World Appl. 9(3), 1236–1252 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Frey, H.: Applications and Developments of Thin Film Technology. Handbook of Thin-Film Technology. Springer, Berlin (2015)CrossRefGoogle Scholar
  11. 11.
    Chopra, K.N., Maini, A.K.: Thin Films and Their Applications in Military and Civil Sectors. Defence Res. Dev. Org. Min. Defence, New Delhi (2010)Google Scholar
  12. 12.
    Aziz, R.C., Hashim, I., Alomari, A.K.: Thin film flow and heat transfer on an unsteady stretching sheet with internal heating. Meccanica 46(2), 349–357 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nadeem, S., Faraz, N.: Thin film flow of a second grade fluid over a stretching/shrinking sheet with variable temperature-dependent viscosity. Chin. Phys. Lett. 7(3), 034704 (2010)CrossRefGoogle Scholar
  14. 14.
    Siddiqui, A.M., Ahmed, M., Ghori, Q.K.: Thin film flow of non-Newtonian fluids on a moving belt. Chaos Solitons Fractals 33(3), 1006–1016 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Khan, N.S., Islam, S., Gul, T., Khan, I., Khan, W., Ali, L.: Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alex. Eng. J. (2017).  https://doi.org/10.1016/j.aej.2017.01.036 CrossRefGoogle Scholar
  16. 16.
    Ali, M., Awais, M.: Laplace transform method for unsteady thin film flow of a second grade fluid through a porous medium. J. Mod. Phys. 5(03), 103 (2014)CrossRefGoogle Scholar
  17. 17.
    Gul, T., Haleem, I., Ullah, I., Khan, M.A., Bonyah, E., Khan, I., Shuaib, M.: The study of the entropy generation in a thin film flow with variable fluid properties past over a stretching sheet. Adv. Mech. Eng. 10(11), 1–15 (2018)CrossRefGoogle Scholar
  18. 18.
    Gul, T., Waris, K., Muhammad, S., Muhammad, A.K., Ebenezer, B.: MWCNTs/SWCNTs nanofluid thin film flow over a nonlinear extending disc: OHAM solution. J. Thermal. Sci. 28(1), 115–122 (2019)CrossRefGoogle Scholar
  19. 19.
    Gul, T.: Scattering of a thin layer over a nonlinear radially extending surface with Magneto hydrodynamic and thermal dissipation. Surf. Rev. Lett. 26(01), 1850123 (2019)CrossRefGoogle Scholar
  20. 20.
    Gul, T., Islam, S., Shah, R.A., Khan, I., Khalid, A., Shafie, S.: Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt. PLoS ONE 9(11), e103843 (2014)CrossRefGoogle Scholar
  21. 21.
    Gul, T., Islam, S., Shah, R.A., Khalid, A., Khan, I., Shafie, S.: Unsteady MHD thin film flow of an Oldroyd-B fluid over an oscillating inclined belt. PLoS ONE 10(7), e0126698 (2015)CrossRefGoogle Scholar
  22. 22.
    Gul, T., Islam, S., Shah, R.A., Khan, I., Shafie, S., Khan, M.A.: Analysis of thin film flow over a vertical oscillating belt with a second grade fluid. Eng. Sci. Technol. Int. J. 18(2), 207–217 (2015)CrossRefGoogle Scholar
  23. 23.
    Makinde, O.D., Chinyoka, T., Rundora, L.: Unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions. Comput. Math Appl. 62(9), 3343–3352 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Baoku, I.G., Onifade, Y.S., Adebayo, L.O., Yusuff, K.M.: Heat and mass transfer in a second grade fluid over a stretching vertical surface in a porous medium. Int. J. Appl. Mech. Eng. 20(2), 239–255 (2015)CrossRefGoogle Scholar
  25. 25.
    Mohamad, A.Q., Khan, I., Ismail, Z., Shafie, S.: The unsteady free convection flow of second grade fluid in rotating frame with ramped wall temperature. AIP Conf. Proc. 1605(1), 398–403 (2014)CrossRefGoogle Scholar
  26. 26.
    Zin, N.A.M., Mohamad, A.Q., Khan, I., Shafie, S.: Heat and mass transfer of unsteady MHD free convection flow of second grade fluid with Newtonian heating. AIP Conf. Proc. 1775(1), 030007 (2016)CrossRefGoogle Scholar
  27. 27.
    Hayat, T., Ellahi, R., Mahomed, F.M.: Exact solution of a thin film flow of an Oldroyd 6-constant fluid over a moving belt. Commun. Nonlinear Sci. Numer. Simul. 14(1), 133–139 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Abelman, S., Neossi Nguetchue, S.N.: Application of the homotopy analysis method (HAM) to thin film flow of a generalized second-grade fluid on a vertically moving belt. Chem. Eng. Commun. 199(10), 1298–1319 (2012)CrossRefGoogle Scholar
  29. 29.
    Alam, M.K., Siddiqui, A.M., Rahim, M.T., Islam, S., Avital, E.J., Williams, J.J.R.: Thin film flow of magnetohydrodynamic (MHD) pseudo-plastic fluid on vertical wall. Appl. Math. Comput. 245, 544–556 (2014)zbMATHGoogle Scholar
  30. 30.
    Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rational Mech. Anal. 56(3), 191–252 (1974)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hollenbeck, K.J.: INVLAP. M: A matlab function for numerical inversion of Laplace transforms by the de Hoog algorithm. http://www.isva.dtu.dk/staff/karl/invlap.htm (1998)
  32. 32.
    de Hoog, F.R., Knight, J.H., Stokes, A.N.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 3, 357–366 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of MathematicsKalinga Institute of Industrial Technology Deemed to be University (KIIT)BhubaneswarIndia

Personalised recommendations