Advertisement

Existence, Uniqueness and Ulam Stabilities for Nonlinear Hyperbolic Partial Integrodifferential Equations

  • Pallavi U. ShikhareEmail author
  • Kishor D. Kucche
Original Paper
  • 16 Downloads

Abstract

In the present article, by employing weakly Picard operator theory we investigate the existence and uniqueness of solutions and Ulam–Hyers stability of nonlinear hyperbolic partial Volterra and Volterra–Fredholm integrodifferential equations in Banach Spaces. Further, we obtain Ulam–Hyers–Rassias stability for these equations via Pachpatte’s integral inequalities. Appropriate examples are provided in support of the results we obtained.

Keywords

Hyperbolic partial integrodifferential equations Ulam–Hyers stability Ulam–Hyers–Rassias stability Integral inequality Fixed point equation Weakly Picard operator 

Mathematics Subject Classification

34G20 35L90 35R45 45M10 47H10 

Notes

Acknowledgements

The first author is financially supported by UGC, New Delhi, India. Ref: F1-17.1/2017-18/RGNF-2017-18-SC-MAH-43083.

References

  1. 1.
    Ulam, S.M.: Problems in Modern Mathematics (Chapter 6). Wiley, New York (1960) Google Scholar
  2. 2.
    Rus, I.: Ulam stability of ordinary differential equations. “BABES-BOLYAI” Math. 54(4), 125–133 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Jung, S.M.: A fixed point approach to the stabilty of a Volterra integral equations. Fixed Point Theory Appl. 2007, Article ID 57064 (2007)Google Scholar
  4. 4.
    Castro, L.P., Ramos, A.: Hyers–Ulam–Rassias stability for a class of nonlinear Volterra integral equations. J. Math. Anal. 3(1), 36–43 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Sevgin, S., Sevli, H.: Stability of a nonlinear Volterra integrodifferential equation via a fixed point approach. J. Nonlinear Sci. Appl. 9, 200–207 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lungu, N., Popa, D.: Hyers–Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385, 86–91 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gordji, M.E., Cho, Y.J., Ghaemi, M.B., Alizadeh, B.: Stability of the second order partial differential equations. J. Inequal. Appl. 2011(1), 81 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lungu, N., Rus, I.: Ulam stability of a nonlinear hyperbolic partial differential equation. Carpathian J. Math. 24(3), 403–408 (2008)zbMATHGoogle Scholar
  9. 9.
    Lungu, N., Craciun, C.: Ulam–Hyers–Rassias stability of a hyperbolic partial differential equation. Int. Sch. Res. Netw. ISRN Math. Anal. 2012, Article ID 609754 (2012) Google Scholar
  10. 10.
    Abbas, S., Benchohra, M.: Ulam–Hyers stability for the darboux problem for partial fractional differential and integrodifferential equation via Picard operators. Results Math. 65(1–2), 67–79 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rus, I.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26(1), 103–107 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Akkouchi, M., Bounabat, A., Lalaoui Rhali, M.H.: Fixed point approach to the stability of an integral equation in the sense of Ulam-Hyers-Rassias. Ann. Math. Sil. 25, 27–44 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Otrocol, D.: Ulam stablities of differential equations with abstract Volterra operator in a Banach space. Nonlinear Funct. Anal. Appl. 15(4), 613–619 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kucche, K.D., Shikhare, P.U.: Ulam-Hyers stability of integrodifferential equations in Banach spaces via Pachpatte’s inequality. Asian Eur. J. Math. 11(2), 1850062 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kucche, K.D., Shikhare, P.U.: Ulam stabilities via Pachpatte’s inequality for Volterra–Fredholm delay integrodifferential equations in Banach spaces. Note di Mat. 38(1), 67–82 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Otrocol, D., Ilea, V.: Ulam stablity for a delay differential equations. Cen. Eur. J. Math. 11(7), 1296–1303 (2013)zbMATHGoogle Scholar
  17. 17.
    Huang, J., Li, Y.: Hyers–Ulam stability of delay differential equations of first order. Math. Nachr. 289(1), 60–66 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kucche, K.D., Shikhare, P.U.: Ulam stabilities for nonlinear Volterra–Fredholm delay integrodifferential equations. Int. J. Nonlinear Anal. Appl. 9(2), 145–159 (2018)zbMATHGoogle Scholar
  19. 19.
    Rus, I.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10(4), 305–320 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Pachpatte, B.G.: On some new integral and integrodifferential inequalities in two independent variables and their applications. J. Differ. Eq. 33(2), 249–272 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pachpatte, B.G.: On some fundamental partial integral inequalities. J. Math. Anal. Appl. 73(1), 238–251 (1980)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rus, I.: Picard operators and applications. Sci. Math. Jpn. 58(1), 191–219 (2003)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rus, I.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)zbMATHGoogle Scholar
  24. 24.
    Rus, I.: Weakly Picard operators and applications. Semin. Fixed Point Theory Cluj-Napoca 2, 41–58 (2001)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, New York (1998)zbMATHGoogle Scholar
  26. 26.
    Pachpatte, B.G.: Integral and Finite Difference Inequalities and Applications, North-Holland Mathematics Studies, vol. 205. Elsevier Science, Amsterdam (2006)Google Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of MathematicsShivaji UniversityKolhapurIndia

Personalised recommendations