Advertisement

Study of Rayleigh–Bénard Convection of a Newtonian Nanoliquid in a High Porosity Medium Using Local Thermal Non-equilibrium Model

  • P. G. SiddheshwarEmail author
  • T. N. Sakshath
Original Paper
  • 15 Downloads

Abstract

In the paper we make linear and non-linear stability analyses of Rayleigh–Bénard convection in a Newtonian, nanoliquid-saturated porous medium using local thermal non-equilibrium model (LTNE). The LTNE assumption results in advanced onset of convection and increase in heat transport when compared to that of local thermal equilibrium assumption. Free–free and rigid–rigid, isothermal boundaries are considered for investigation. The Galerkin method is used to obtain the critical eigen value. The influence of inter-phase heat transfer coefficient, ratio of thermal conductivities, Brinkman number, porous parameter on the onset of convection as well as on heat transport has been presented graphically and discussed in detail. The effect of increasing the value of porosity modified thermal conductivities advances the onset of convection and enhances the amount of heat transport whereas the remaining parameters have an opposing influence on both onset of convection as well as heat transport.

Keywords

Rayleigh–Bénard convection Nanoliquid Porous medium LTNE Free–free Rigid–rigid Linear Non-linear 

List of Symbols

ABCD

Amplitudes of convection

\(C_p\)

Specific heat at constant pressure

d

Channel depth

\(\mathbf {g}\)

Acceleration due to gravity

h

Inter-phase heat transfer coefficient

H

Dimensionless inter-phase heat transfer coefficient

k

Wavenumber in the x direction

K

Permeability

p

Pressure

Pr

Prandtl number

\(\overrightarrow{q}\)

Filtration velocity or Darcy velocity

t

Time

T

Temperature

V

Dimensional velocity in the y direction

xz

Cartesian coordinate

XZ

Dimensionless coordinates

Greek Symbols

\(\alpha _{nl}\)

Thermal diffusivity of the nanoliquid

\(\alpha _{bl}\)

Thermal diffusivity of the base liquid

\(\gamma \)

Porosity-modified ratio of thermal conductivities

\(\beta \)

Thermal expansion coefficient

k

Thermal conductivity

\(\Lambda \)

Ratio of viscosities or Brinkman number

\(\mu \)

Viscosity of the nanoliquid

\(\mu ^{'}\)

Viscosity of the nanoliquid in saturated porous medium

\(\phi \)

Porosity(\(0<\phi <1\))

\(\Psi \)

Dimensionless stream function

\(\psi \)

Dimensional stream function

\(\rho \)

Density

\(\sigma ^2\)

Inverse Darcy number or porous parameter

\(\tau \)

Dimensionless time

\(\Theta \)

Dimensionless temperature

Subscripts or Superscripts

0

Reference value

b

Basic state

c

Critical

bl

Base liquid

nl

Nano liquid

LTE

Local thermal equilibrium

LTNE

Local thermal non-equilibrium

s

Solid

Notes

References

  1. 1.
    Agarwal, S., Bhadauria, B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non-equilibrium model. Transp. Porous Media 90, 627–654 (2011a)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agarwal, S., Bhadauria, B.S., Siddheshwar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Spec. Top. Rev. Porous Media 2(1), 53–64 (2011)CrossRefGoogle Scholar
  3. 3.
    Banu, N., Rees, D.A.S.: Onset of Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)CrossRefGoogle Scholar
  4. 4.
    Barletta, A., Celli, M., Lagziri, H.: Instability of a horizontal porous layer with local thermal non-equilibrium: effects of free surface and convective boundary conditions. Int. J. Heat Mass Transf. 89, 75–89 (2015)CrossRefGoogle Scholar
  5. 5.
    Celli, M., Lagziri, H., Bezzazi, M.: Local thermal non-equilibrium effects in the Horton–Rogers–Lapwood problem with a free surface. Int. J. Therm. Sci. 116, 254–264 (2017)CrossRefGoogle Scholar
  6. 6.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, London (1961)zbMATHGoogle Scholar
  7. 7.
    Chandrasekhar, S., Reid, W.H.: On the expansion of functions which satisfy four boundary conditions. Proc. Natl. Acad. Sci. U.S.A. 43, 521–527 (1957)MathSciNetCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Katto, Y., Masuoka, T.: Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transf. 10(3), 297–309 (1967)CrossRefGoogle Scholar
  10. 10.
    Nagata, M.: Bifurcations at the Eckhaus points in two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 52, 6141–6145 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)zbMATHGoogle Scholar
  12. 12.
    Nield, D.A., Kuznetsov, A.V.: Local thermal non-equilibrium and heterogeneity effects on the onset of convection in a layered porous medium. Transp. Porous Media 102, 1–13 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nield, D.A., Kuznetsov, A.V., Barletta, A., Celli, M.: The onset of convection in a sloping layered porous medium: effects of local thermal non-equilibrium and heterogeneity. Transp. Porous Med. 14, 87–97 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Postelnicu, A.: The onset of a Darcy–Brinkman convection using a thermal nonequilibrium model. Part II. Int. J. Therm. Sci. 47, 1587–1594 (2008)CrossRefGoogle Scholar
  15. 15.
    Postelnicu, A., Rees, D.A.S.: The onset of Darcy–Brinkman convection in a porous layer using a thermal nonequlibrium model—part I: stress free boundaries. Int. J. Energy Res. 27, 961–973 (2003)CrossRefGoogle Scholar
  16. 16.
    Rees, D.A.S., Pop, I.: Local thermal non-equilibrium in porous medium convection. Transp. Porous Media III, 147–173 (2005)Google Scholar
  17. 17.
    Siddheshwar, P.G., Meenakshi, N.: Amplitude equation and heat transport for Rayleigh–Bénard convection in Newtonian liquids with nanoparticles. Int. J. Appl. Comput. Math. 2, 1–22 (2015)CrossRefGoogle Scholar
  18. 18.
    Siddheshwar, P.G., Siddabasappa, C.: Effect of Coriolis force on Brinkman–Bénard convection with late effects. Math. Sci. Int. Res. J. 6(1), 53–56 (2017)Google Scholar
  19. 19.
    Siddheshwar, P.G., Siddabasappa, C.: Linear and weakly nonlinear stability analyses of two-dimensional, steady Brinkman–Bénard convection using local thermal non-equilibrium model. Transp. Porous Media 120(3), 605–631 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Straughan, B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A. 462, 409–418 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of MathematicsBangalore UniversityBangaloreIndia
  2. 2.Department of Mathematics, Faculty of Mathematical and Physical SciencesM S Ramaiah University of Applied SciencesPeenya, BangaloreIndia

Personalised recommendations