A Two-Level Trade-Credit Approach to an Integrated Price-Sensitive Inventory Model with Shortages

  • Abu Hashan Md Mashud
  • Md. Sharif Uddin
  • Shib Sankar SanaEmail author
Original Paper


This paper deals with an economic order quantity model with deterioration for two different demand functions under two-level of trade-credit policy. The demand functions of the proposed model are two types: (i) exponential function of the price (ii) price with the negative power of constant. Shortages are allowed and fully backlogged as deterioration arises. A nonlinear constraint optimization problem is then formulated considering cost and profit parameters. The main objective of this paper is to find out the optimal selling price, optimal deteriorating length and optimal cycle length for the optimal total profit of the chain. Some theoretical as well as numerical outcomes are studied to show the validity of the proposed model. A sensitivity analysis is carried out to study the effect of changes of key parameters of the inventory system.


Deterioration Inventory model Price-dependent demand Shortages Trade-credit 



  1. 1.
    Aggarwal, S.P., Jaggi, C.K.: Ordering policies of deteriorating items under permissible delay in payment. J. Oper. Res. Soc. 46, 658–662 (1995)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chang, H.J., Dye, C.Y.: An EOQ model for deteriorating items with time varying demand and partial backlogging. J. Oper. Res. Soc. 50, 1176–1182 (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chung, C.J., Wee, H.M.: Scheduling and replenishment plan for an integrated deteriorating inventory model with stock-dependent selling rate. Int. J. Adv. Manag. Technol. 35, 665–679 (2007)CrossRefGoogle Scholar
  4. 4.
    Covert, R.P., Philip, G.C.: An EOQ model for items with Weibull distribution deterioration. AIIE Trans. 5, 323–326 (1973)CrossRefGoogle Scholar
  5. 5.
    Dave, U., Patel, L.K.: (T, Si) policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 32, 137–142 (1981)zbMATHGoogle Scholar
  6. 6.
    Ghare, P.M., Schrader, G.F.: An inventory model for exponentially deteriorating items. J. Ind. Eng. 14, 238–243 (1963)Google Scholar
  7. 7.
    Giri, B.C., Jalan, A.K., Chaudhuri, K.S.: Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand. Int. J. Syst. Sci. 34, 237–243 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Goyal, S.K.: Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36, 335–338 (1985)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hariga, M.: Optimal EOQ models for deteriorating items with time-varying demand. J. Oper. Res. Soc. 47, 1228–1246 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Huang, Y.F.: Optimal retailers ordering policies in the EOQ model under trade-credit financing. J. Oper. Res. Soc. 54, 1011–1015 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Li, G., He, X., Zhou, J., Hao, W.: Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items. Omega (2018). CrossRefGoogle Scholar
  12. 12.
    Liao, J.J.: An EOQ model with non-instantaneous receipt and exponentially deteriorating items under two-level trade-credit. Int. J. Prod. Econ. 113(2), 852–861 (2008)CrossRefGoogle Scholar
  13. 13.
    Mashud, A., Khan, M., Uddin, M., Islam, M.: A non-instantaneous inventory model having different deterioration rates with stock and price-dependent demand under partially backlogged shortages. Uncertain Supply Chain Manag. 6(1), 49–64 (2018)CrossRefGoogle Scholar
  14. 14.
    Min, J., Zhou, Y.W., Zhao, J.: An inventory model for deteriorating items under stock-dependent demand and two-level trade-credit. Appl. Math. Model. 34(11), 3273–3285 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Min, J., Zhou, Y.W., Liu, G.Q., Wang, S.D.: An EPQ model for deteriorating items with Inventory-level-dependent demand and permissible delay in payments. Int. J. Syst. Sci. 43(6), 1039–1053 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Moon, I., Giri, B.C., Ko, B.: Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting. Eur. J. Oper. Res. 162(3), 773–785 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mukherjee, A., Mahata, G.C.: Optimal replenishment and credit policy in an inventory model for deteriorating items under two-levels of trade-credit policy when demand depends on both time and credit period involving default risk. RAIRO Oper. Res. 52(4), 1175–1200 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sachan, R.S.: On (T, Si) policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 35, 1013–1019 (1984)zbMATHGoogle Scholar
  19. 19.
    Sana, S.S.: Demand influenced by enterprises’ initiatives—a multi-item EOQ model of deteriorating and ameliorating items. Math. Comput. Model. 52(1–2), 284–302 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sana, S.S.: Optimal selling price and lot size with time varying deterioration and partial backlogging. Appl. Math. Comput. 217, 185–194 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sarkar, B.: An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Model. 55(3–4), 367–377 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sarkar, B.: A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl. Math. Model. 37(5), 3138–3151 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Sarkar, B., Saren, S., Wee, H.M.: An inventory model with variable demand, component cost and selling price for deteriorating items. Econ. Model. 30, 306–310 (2013)CrossRefGoogle Scholar
  24. 24.
    Sarkar, B., Saren, S., Cárdenas-Barrón, L.E.: An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Ann. Oper. Res. 229(1), 677–702 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shaikh, A.A., Mashud, A.H.M., Uddin, M.S., Khan, M.A.A.: Non-instantaneous deterioration inventory model with price and stock dependent demand for fully backlogged shortages under inflation. Int. J. Bus. Forecast. Mark. Intell. 3(2), 152–164 (2017)Google Scholar
  26. 26.
    Skouri, K., Konstantaras, I., Papachristos, S., Ganas, I.: Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. Eur. J. Oper. Res. 192, 79–92 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Taleizadeh, A.A.: An economic order quantity model with partial backordering and advance payments for an evaporating item. Int. J. Prod. Econ. 155, 185–193 (2014)CrossRefGoogle Scholar
  28. 28.
    Taleizadeh, A.A., Pentico, D.W.: An economic order quantity model with a known price increase and partial back ordering. Eur. J. Oper. Res. 228(3), 516–525 (2013)zbMATHCrossRefGoogle Scholar
  29. 29.
    Teng, J.T., Chang, T.C.: Optimal manufacturer’s replenishment policies in the EPQ model under two-levels of trade-credit policy. Eur. J. Oper. Res. 195, 358–363 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Teng, J.T., Goyal, S.K.: Optimal ordering policies for a retailer in a supply chain with upstream and down-stream trade-credits. J. Oper. Res. Soc. 58(9), 1252–1255 (2007)CrossRefGoogle Scholar
  31. 31.
    Ting, P.S.: Comments on the EOQ model for deteriorating items with conditional trade credit linked to order quantity in the supply chain management. Eur. J. Oper. Res. 246(1), 108–118 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Tiwari, S., Barrón, L.E.C., Goh, M., Shaikh, A.A.: Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. Int. J. Prod. Econ. (2018). CrossRefGoogle Scholar
  33. 33.
    Tiwari, S., Jaggi, C.K., Gupta, M., Barrón, L.E.C.: Optimal pricing and lot-sizing policy for supply chain system with deteriorating items under limited storage capacity. Int. J. Prod. Econ. (2018). CrossRefGoogle Scholar
  34. 34.
    Wang, C., Jiang, L.: Inventory policy for deteriorating seasonal products with price and ramp-type time dependent demand. RAIRO Oper. Res. 49(5), 865–878 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Wee, M.H.: A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Comput. Oper. Res. 22, 345–356 (1995)zbMATHCrossRefGoogle Scholar
  36. 36.
    Wee, M.H., Law, P.S.: Economic production lot size for deteriorating items taking account of the time-value of money. Comput. Oper. Res. 26, 545–558 (1999)zbMATHCrossRefGoogle Scholar
  37. 37.
    Wu, J., Ouyang, L.Y., Cárdenas-Barrón, L.E., Goyal, S.K.: Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade-credit financing. Eur. J. Oper. Res. 237(3), 898–908 (2014)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  • Abu Hashan Md Mashud
    • 1
  • Md. Sharif Uddin
    • 2
  • Shib Sankar Sana
    • 3
    Email author
  1. 1.Department of MathematicsHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
  2. 2.Department of MathematicsJahangirnagar UniversitySavar, DhakaBangladesh
  3. 3.Kishore Bharati Bhagini Nivedita CollegeKolkataIndia

Personalised recommendations