Existence of Solutions for a Functional Integro-Differential Equation with Infinite Point and Integral Conditions

  • A. M. A. El-Sayed
  • Reda Gamal AhmedEmail author
Original Paper


In this article, we study the existence of solutions for two initial value problems of the functional integro-differential equation with nonlocal infinite-point and integral conditions. We study the continuous dependence of the solution. As some examples illustrate the importance of the results.


Existence of solutions Continuous dependence Nonlocal condition Integral condition Infinite point condition 

Mathematics Subject Classification

34A12 34k20 34k25 



  1. 1.
    Aikhazraji, A.S.A.: Traffic flow problem with differential equation. AL-Fatih J. 35, 38–46 (2008)Google Scholar
  2. 2.
    Coleman, C.S., Braun, M., Drew, D.A.: Differential Equation Models. Springer, Berlin (1983)Google Scholar
  3. 3.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefGoogle Scholar
  4. 4.
    Dugundji, J., Granas, A.: Fixed Point Theory, Monografie Mathematyczne. PWN, Warsaw (1982)zbMATHGoogle Scholar
  5. 5.
    El-Kadeky, KhW: A nonlocal proplem of the differential equation \(x^{\prime }= f(t, x, x^{\prime })\). J. Fract. Calc. Appl. 3(7), 1–8 (2012)Google Scholar
  6. 6.
    El-Owaidy, H., El-Sayed, A.M.A., Ahmed, R.G.: Existence of solutions of a coupled system of functional integro-differential equations of arbitrary (fractional) orders. Malaya J. Mat. 6(4), 774–780 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    El-Sayed, A.M.A., Gamal, R.: Infinite point and riemann-stieltjes integral conditions for an integro-differential equation. Nonlinear Anal. Model. Control 24(4), 485–506 (2019)Google Scholar
  8. 8.
    Ge, F., Zhou, H., Kou, C.: Existence of solutions for a coupled fractional differential equations with infinitely many points boundary conditions at resonance on an unbounded domain. Differ. Equ. Dyn. Syst. 24, 1–17 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambirdge Universty Press, Cambirdge (1990)CrossRefGoogle Scholar
  10. 10.
    Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions. Nonlinear Anal. Model. Control 21, 635–650 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kolomogorov, A.N., Fomin, S.V.: Inroductory Real Analysis. Dover Publications Inc, New York (1975)Google Scholar
  12. 12.
    Liu, B., Li, J., Liu, L., Wang, Y.: Existence and uniqueness of nontrivial solutions to a system of fractional differential equations with riemann-stieltjes integral conditions. Adv. Differ. Equ. 2018(1), 306 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, X., Liu, L., Wu, Y.: Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018(1), 24 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marcellini, F.: Ode-pde models in traffic flow dynamics. Bull. Braz. Math. Soc. 47(1), 1–12 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Min, D., Liu, L., Wu, Y.: Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions. Bound. Value Probl. 2018(1), 23 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Srivastava, H.M., El-Sayed, A.M.A., Gaafar, F.M.: A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the riemann-stieltjes functional integral and infinite-point boundary conditions. Symmetry 10(508), 1–13 (2018)Google Scholar
  17. 17.
    Zhang, X., Liu, L., Wu, Y., Zou, Y.: Existence and uniqueness of solutions for systems of fractional differential equations with riemann-stieltjes integral boundary condition. Adv. Differ. Equ. 2018(1), 204 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations