Extraction of Solitary Wave Features to the Heisenberg Ferromagnetic Spin Chain and the Complex Klein–Gordon Equations
- 62 Downloads
Abstract
In this paper, the modified Kudryashov method is applied for obtaining the exact travelling wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation and the complex Klein–Gordon equation. The extracted solutions show distinct physical configurations. More precisely, the modified Kudryashov method is utilized for constructing the exact periodic and soliton solutions of these equations. As an outcome, in a broader sense, dark, bright, dark-bright, singular or combined singular and optical soliton solutions or wave features are derived from the equations. All solitons are verified through the corresponding equations with the help of Maple package program. The three-dimensional and two-dimensional waves are generated with the help of MATLAB for investigating the real significance of the proposed scheme to draw all solutions.
Keywords
Heisenberg ferromagnetic spin chain equation Complex Klein–Gordon equation Modified Kudryashov method New exact traveling wave solutions Symbolic computationNotes
Acknowledgements
The authors would like to thank Mohammed Khurshed Alam of department of Electrical and Electronic Engineering, Uttara University for his valuable suggestions in preparing the manuscript.
References
- 1.Russell, A.J.S.: Report on waves. In: Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–390 (1844)Google Scholar
- 2.Tam, H.W., Hu, X.B.: Soliton solutions and Bäcklund transformation for the Kupershmidt five-field lattice: a bilinear approach. Appl. Math. Lett. 15(8), 987–993 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform, vol. 4. SIAM, Philadelphia (1981)CrossRefzbMATHGoogle Scholar
- 4.Liu, G.T., Fan, T.Y.: New applications of developed Jacobi elliptic function expansion methods. Phys. Lett. A 345(1–3), 161–166 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique. Proc. R. Soc. Lond. A 389(1797), 319–329 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scripta 54(6), 563 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Abazari, R.: Application of extended Tanh function method on KdV-Burgers equation with forcing term. Rom. J. Phys. 59(1–2), 3–11 (2014)MathSciNetGoogle Scholar
- 8.Yan, C.: A simple transformation for nonlinear waves. Phys. Lett. A 224(1–2), 77–84 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Xu, F.: Application of Exp-function method to symmetric regularized long wave (SRLW) equation. Phys. Lett. A 372(3), 252–257 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Tascan, F., Bekir, A., Koparan, M.: Travelling wave solutions of nonlinear evolution equations by using the first integral method. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1810–1815 (2009)CrossRefGoogle Scholar
- 11.Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216(1–5), 67–75 (1996)CrossRefzbMATHGoogle Scholar
- 12.Wang, M.: Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 213(5–6), 279–287 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Zhang, S., Xia, T.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363(5–6), 356–360 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Seadawy, A.R., Lu, D.: Ion acoustic solitary wave solutions of three-dimensional nonlinear extended Zakharov–Kuznetsov dynamical equation in a magnetized two-ion-temperature dusty plasma. Results Phys. 6, 590–593 (2016)CrossRefGoogle Scholar
- 15.Jiong, S.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309(5–6), 387–396 (2003)MathSciNetzbMATHGoogle Scholar
- 16.Hu, H.C., Tang, X.Y., Lou, S.Y., Liu, Q.P.: Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik–Novikov–Veselov system. Chaos Solitons Fractals 22(2), 327–334 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Leble, S.B., Ustinov, N.V.: Darboux transforms, deep reductions and solitons. J. Phys. A Math. Gen. 26(19), 5007 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4(4), 903–909 (2013)CrossRefGoogle Scholar
- 19.Khan, K., Akbar, M.A.: Exact solutions of the (2 + 1)-dimensional cubic Klein–Gordon equation and the (3 + 1)-dimensional Zakharov–Kuznetsov equation using the modified simple equation method. J. Assoc. Arab Univ. Basic Appl. Sci. 15(1), 74–81 (2014)Google Scholar
- 20.Lee, J., Sakthivel, R.: New exact travelling wave solutions of bidirectional wave equations. Pramana 76(6), 819–829 (2011)CrossRefGoogle Scholar
- 21.Wang, M., Li, X., Zhang, J.: The (G′ G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Kim, H., Sakthivel, R.: New exact traveling wave solutions of some nonlinear higher-dimensional physical models. Rep. Math. Phys. 70(1), 39–50 (2012)MathSciNetCrossRefGoogle Scholar
- 23.Khan, K., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G)-expansion method. J. Egypt. Math. Soc. 22(2), 220–226 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Islam, M.E., Khan, K., Akbar, M.A., Islam, R.: Traveling wave solutions of nonlinear evolution equation via enhanced (G′/G)-expansion method. GANIT J. Bangladesh Math. Soc. 33, 83–92 (2013)MathSciNetCrossRefGoogle Scholar
- 25.Naher, H., Abdullah, F.A.: New generalized and improved (G′/G)-expansion method for nonlinear evolution equations in mathematical physics. J. Egypt. Math. Soc. 22(3), 390–395 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Naher, H., Abdullah, F.A., Bekir, A.: Abundant traveling wave solutions of the compound KdV-Burgers equation via the improved (G′/G)-expansion method. AIP Adv. 2(4), 042163 (2012)CrossRefGoogle Scholar
- 27.Naher, H., Abdullah, F.A.: Some new traveling wave solutions of the nonlinear reaction diffusion equation by using the improved (G′/G)-expansion method. Math. Prob. Eng. 2012, 1–17 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Naher, H., Abdullah, F.A., Akbar, M.A.: Generalized and improved (G′/G)-expansion method for (3 + 1)-dimensional modified KdV–Zakharov–Kuznetsev equation. PLoS ONE 8(5), e64618 (2013)CrossRefGoogle Scholar
- 29.Islam, M.E., Khan, K., Akbar, M.A., Islam, R.: Enhanced (G’/G)-expansion method to find the exact solutions of nonlinear evolution equations in mathematical physics. Int. J. Part. Differ. Equ. Appl 1, 6–12 (2013)Google Scholar
- 30.Hosseini, K., Mayeli, P., Bekir, A., Guner, O.: Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions. Commun. Theor. Phys. 69(1), 1 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
- 31.Hosseini, K., Bekir, A., Kaplan, M., Güner, Ö.: On a new technique for solving the nonlinear conformable time-fractional differential equations. Opt. Quant. Electron. 49(11), 343 (2017)CrossRefGoogle Scholar
- 32.Mohyud-Din, S.T., Noor, M.A.: Homotopy perturbation method for solving fourth-order boundary value problems. Math. Prob. Eng. 2007, 1–12 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Mohyud-Din, S.T., Noor, M.A.: Homotopy perturbation method for solving partial differential equations. Z. Naturforsch. A 64(3–4), 157–170 (2009)zbMATHCrossRefGoogle Scholar
- 34.Mohyud-Din, S.T., Yildrim, A., Sariaydin, S.: Approximate series solutions of the viscous Cahn–Hilliard equation via the homotopy perturbation method. World Appl. Sci. J. 11(7), 813–818 (2010)Google Scholar
- 35.Chun, C., Sakthivel, R.: Homotopy perturbation technique for solving two-point boundary value problems–comparison with other methods. Comput. Phys. Commun. 181(6), 1021–1024 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 36.Sakthivel, R., Chun, C., Lee, J.: New travelling wave solutions of Burgers equation with finite transport memory. Z. Naturforsch. A 65(8–9), 633–640 (2010)CrossRefGoogle Scholar
- 37.Zhao, Y.M.: F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation. J. Appl. Math. 2013, 1–7 (2013)MathSciNetzbMATHGoogle Scholar
- 38.Wen-Hua, H.: A generalized extended F-expansion method and its application in (2 + 1)-dimensional dispersive long wave equation. Commun. Theor. Phys. 46(4), 580 (2006)MathSciNetCrossRefGoogle Scholar
- 39.Islam, M.S., Khan, K., Akbar, M.A., Mastroberardino, A.: A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations. R. Soc. Open Sci. 1(2), 140038 (2014)CrossRefGoogle Scholar
- 40.Molliq, Y., Noorani, M.S.M., Hashim, I.: Variational iteration method for fractional heat-and wave-like equations. Nonlinear Anal. Real World Appl. 10(3), 1854–1869 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Hosseini, K., Mayeli, P., Ansari, R.: Bright and singular soliton solutions of the conformable time-fractional Klein–Gordon equations with different nonlinearities. Waves Random Complex Media 28(3), 426–434 (2018)MathSciNetCrossRefGoogle Scholar
- 42.Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik 132, 203–209 (2017)CrossRefGoogle Scholar
- 43.Hosseini, K., Manafian, J., Samadani, F., Foroutan, M., Mirzazadeh, M., Zhou, Q.: Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (ϕ (η)/2)-expansion method and exp function approach. Optik 158, 933–939 (2018)CrossRefGoogle Scholar
- 44.Seadawy, A.R.: The solutions of the Boussinesq and generalized fifth-order KdV equations by using the direct algebraic method. Appl. Math. Sci. 6(82), 4081–4090 (2012)MathSciNetzbMATHGoogle Scholar
- 45.Seadawy, A.R.: Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas 21(5), 052107 (2014)CrossRefGoogle Scholar
- 46.Seadawy, A.: Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations. Appl. Math. Inf. Sci. 10(1), 209 (2016)CrossRefGoogle Scholar
- 47.Seadawy, A.R.: Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili–Burgers equation in quantum plasma. Math. Methods Appl. Sci. 40(5), 1598–1607 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 48.Seadawy, A.R.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions. Optik 139, 31–43 (2017)CrossRefGoogle Scholar
- 49.Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017)MathSciNetCrossRefGoogle Scholar
- 50.Tariq, K.U., Seadawy, A.R.: Optical soliton solutions of higher order nonlinear Schrödinger equation in monomode fibers and its applications. Optik 154, 785–798 (2018)CrossRefGoogle Scholar
- 51.Triki, H., Wazwaz, A.M.: New solitons and periodic wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. J. Electromagn. Waves Appl. 30(6), 788–794 (2016)CrossRefGoogle Scholar
- 52.Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)zbMATHGoogle Scholar
- 53.Hesegawa, A., Kodama, Y.: Solitons in Optical Communication. Oxford University Press, Oxford (1995)Google Scholar
- 54.Caudrey, P.J., Eilbeck, J.C., Gibbon, J.D.: The sine-Gordon equation as a model classical field theory. II Nuovo Cimento B (1971–1996) 25(2), 497–512 (1975)Google Scholar
- 55.Dodd, R.K., Morris, H.C., Eilbeck, J.C., Gibbon, J.D.: Soliton and Nonlinear Wave Equations, p. 640. Academic Press, London (1982)Google Scholar
- 56.Zhang, Z.: New exact traveling wave solutions for the nonlinear Klein–Gordon equation. Turk. J. Phys. 32(5), 235–240 (2008)Google Scholar
- 57.Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 58.Hosseini, K., Bekir, A., Kaplan, M.: New exact traveling wave solutions of the Tzitzéica-type evolution equations arising in non-linear optics. J. Mod. Opt. 64(16), 1688–1692 (2017)CrossRefGoogle Scholar
- 59.Ray, S.S.: New analytical exact solutions of time fractional KdV–KZK equation by Kudryashov methods. Chin. Phys. B 25(4), 040204 (2016)CrossRefMathSciNetGoogle Scholar
- 60.Ray, S.S., Sahoo, S.: Two efficient reliable methods for solving fractional fifth order modified Sawada–Kotera equation appearing in mathematical physics. J. Ocean Eng. Sci. 1(3), 219–225 (2016)CrossRefGoogle Scholar
- 61.Bulut, H., Pandir, Y., Baskonus, H.M.: Symmetrical hyperbolic Fibonacci function solutions of generalized Fisher equation with fractional order. In: AIP Conference Proceedings, vol. 1558, No. 1, pp. 1914–1918. AIP (2013)Google Scholar
- 62.Hosseini, K., Samadani, F., Kumar, D., Faridi, M.: New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik 157, 1101–1105 (2018)CrossRefGoogle Scholar