Advertisement

Numerical Investigation of the Time Fractional Mobile-Immobile Advection-Dispersion Model Arising from Solute Transport in Porous Media

  • Ahmad GolbabaiEmail author
  • Omid Nikan
  • Touraj Nikazad
Original Paper
  • 14 Downloads

Abstract

Evolution equations containing fractional derivatives can offer efficient mathematical models for determination of anomalous diffusion and transport dynamics in multi-faceted systems that cannot be precisely modeled by using normal integer order equations. In recent times, researches have found out that lots of physical processes illustrate fractional order characteristics that alters with time or space. The continuum of order in the fractional calculus permits the order of the fractional operator be accounted for as a variable. In the current research work, radial basis functions (RBFs) approximation is utilized for solving fractional mobile-immobile advection-dispersion (TF-MIM-AD) model in a bounded domain which is applied for explaining solute transport in both porous and fractured media. In this approach, firstly, the discretization process of the aforesaid equation with of convergence order \(\mathcal {O}(\delta t^{})\) in the t-direction is described via the finite difference scheme for \( 0< \alpha <1\). Afterwards, by help of the meshless methods based on RBFs, we will illustrate how to obtain the approximated solution. The stability and convergence of time-discretized scheme are also theoretically discussed in detail throughout the paper. Finally, two numerical instances are included to clarify effectiveness and accuracy of our proposed concepts which is investigated in the current research work.

Keywords

TF-MIM-AD model Radial basis functions RBF-PS Collocation methods Stability Convergence 

Mathematics Subject Classification

35R11 65M70 91G60 

Notes

Acknowledgements

We express our sincere thanks to Associate Editor and anonymous reviewers for carefully reading this paper and their comments and suggestions which greatly improved the presentation of this paper. The authors are also very much grateful to the Editor-in-Chief, Santanu Saha Ray for his pursuances.

References

  1. 1.
    Coats, K., Smith, B., et al.: Dead-end pore volume and dispersion in porous media. Soc. Pet. Eng. J. 4(01), 73 (1964)Google Scholar
  2. 2.
    Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Chen, Z., Qian, J., Zhan, H., Chen, L., Luo, S.: Mobile-immobile model of solute transport through porous and fractured media. Proc. ModelCARE 2009, 274 (2010)Google Scholar
  4. 4.
    Bauget, F., Fourar, M.: Non-fickian dispersion in a single fracture. J. Contam. Hydrol. 100(3–4), 137 (2008)Google Scholar
  5. 5.
    Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water. Resour. 25(8–12), 861 (2002)Google Scholar
  6. 6.
    Scher, H., Lax, M.: Stochastic transport in a disordered solid. i. theory. Phys. Rev. B. 7(10), 4491 (1973)MathSciNetGoogle Scholar
  7. 7.
    Toride, N., Leij, F., Van Genuchten, M.T., et al.: The cxtfit code for estimating transport parameters from laboratory or field tracer experiments. Tech. Rep., version 2.0, Research Report (1995)Google Scholar
  8. 8.
    Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, lévy motion, and the made tracer tests. Transp. Porous Media 42(1–2), 211 (2001)MathSciNetGoogle Scholar
  9. 9.
    Podlubny, I.: Fractional differential equations. Math. Sci. Eng 198 (1999)Google Scholar
  10. 10.
    Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations Wiley, New York (1993)Google Scholar
  11. 11.
    Baleanu, D., Machado, J.A.T., Luo, A.C.: Fractional Dynamics and Control. Springer, Berlin (2011)Google Scholar
  12. 12.
    Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011)Google Scholar
  13. 13.
    Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Pte. Ltd, Singapore (2000). ISBN# 9789812817747zbMATHGoogle Scholar
  14. 14.
    Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, vol. 378. Springer, Berlin (2014)zbMATHGoogle Scholar
  15. 15.
    Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10):1296 (2003).  https://doi.org/10.1029/2003WR002141
  16. 16.
    Chaddha, A., Pandey, D.N.: Approximations of solutions for an impulsive fractional differential equation with a deviated argument. Int. J. Appl. Comput. Math. 2(2), 269 (2016)MathSciNetGoogle Scholar
  17. 17.
    Khan, H., Alipour, M., Jafari, H., Khan, R.A.: Approximate analytical solution of a coupled system of fractional partial differential equations by bernstein polynomials. Int. J. Appl. Comput. Math. 2(1), 85 (2016)MathSciNetGoogle Scholar
  18. 18.
    Singh, H., Sahoo, M.R., Singh, O.P.: Numerical method based on galerkin approximation for the fractional advection-dispersion equation. Int. J. Appl. Comput. Math. 3(3), 2171 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Darehmiraki, M.: An efficient solution for stochastic fractional partial differential equations with additive noise by a meshless method. Int. J. Appl. Comput. Math. 4(1), 14 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jafari, H., Tajadodi, H., Bolandtalat, A., Johnston, S.: A decomposition method for solving the fractional davey-stewartson equations. Int. J. Appl. Comput. Math. 1(4), 559 (2015)MathSciNetGoogle Scholar
  21. 21.
    Sayevand, K., Pichaghchi, K.: Successive approximation: a survey on stable manifold of fractional differential systems. Fract. Calc. Appl. Anal. 18(3), 621 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sayevand, K., Pichaghchi, K.: Reanalysis of an open problem associated with the fractional schrödinger equation. Theor. Math. Phys. 192(1), 1028 (2017)zbMATHGoogle Scholar
  23. 23.
    Sayevand, K., Pichaghchi, K.: A novel operational matrix method for solving singularly perturbed boundary value problems of fractional multi-order. Int. J. Comput. Math. 95(4), 767 (2018)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhang, H., Liu, F., Phanikumar, M., Meerschaert, M.: In: Proceedings of the 5th Symposium on Fractional Differentiation and its Applications. Hohai University (2012)Google Scholar
  25. 25.
    Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64(10), 2990 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66(5), 693 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Pourbashash, H., Baleanu, D., Al Qurashi, M.M.: On solving fractional mobile/immobile equation. Adv. Mech. Eng. 9(1), 1687814016688616 (2017)Google Scholar
  28. 28.
    Abdelkawy, M., Zaky, M., Bhrawy, A., Baleanu, D.: Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 67(3), 773 (2015)Google Scholar
  29. 29.
    Pourbashash, H.: Application of high-order spectral method for the time fractional mobile/immobile equation. Comput. Methods Differ. Equ. 4(4), 309 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput. Math. Appl. 19(8–9), 163 (1990)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181 (1982)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8(4), 381 (1998)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Micchelli, C.A.: Approximation Theory and Spline Functions, pp. 143–145. Springer, Berlin (1984)Google Scholar
  34. 34.
    Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—i surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127 (1990)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Madych, W., Nelson, S.: Multivariate interpolation and conditionally positive definite functions ii. Math. Comput. 54(189), 211 (1990)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2(2) (2009)Google Scholar
  37. 37.
    Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3–5), 413 (2002)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Fornberg, B., Zuev, J.: The runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Golbabai, A., Rabiei, H.: A meshfree method based on radial basis functions for the eigenvalues of transient stokes equations. Eng. Anal. Bound. Elem. 36(11), 1555 (2012)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Golbabai, A., Nikpour, A.: Computing a numerical solution of two dimensional non-linear schrödinger equation on complexly shaped domains by RBF based differential quadrature method. J. Comput. Phys. 322, 586 (2016)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Golbabai, A., Nikpour, A.: Stability and convergence of radial basis function finite difference method for the numerical solution of the reaction-diffusion equations. Appl. Math. Comput. 271, 567 (2015)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Golbabai, A., Safdari-Vaighani, A.: A meshless method for numerical solution of the coupled schrödinger-kdv equations. Computing 92(3), 225 (2011)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of the two-dimensional sinh-gordon equation via three meshless methods. Eng. Anal. Bound. Elem. 51, 220 (2015)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Rashidinia, J., Fasshauer, G.E., Khasi, M.: A stable method for the evaluation of gaussian radial basis function solutions of interpolation and collocation problems. Comput. Math. Appl. 72(1), 178 (2016)MathSciNetGoogle Scholar
  45. 45.
    Rashidinia, J., Khasi, M., Fasshauer, G.E.: A stable gaussian radial basis function method for solving nonlinear unsteady convection-diffusion-reaction equations. Comput. Math. Appl. 75(5), 1831 (2018)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Liu, Q., Gu, Y., Zhuang, P., Liu, F., Nie, Y.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48(1), 1 (2011)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Gu, Y., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int. J. Comp. Method-Sing. 8(04), 653 (2011)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng. Anal. Bound. Elem. 38, 72 (2014)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-gordon and klein-gordon equations. Eng. Anal. Bound. Elem. 50, 412 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Permoon, M., Rashidinia, J., Parsa, A., Haddadpour, H., Salehi, R.: Application of radial basis functions and sinc method for solving the forced vibration of fractional viscoelastic beam. J. Mech. Sci. Technol. 30(7), 3001 (2016)Google Scholar
  51. 51.
    Golbabai, A., Nikan, O.: Application of the RBF meshless approach for solving fractional order differential equations. J. Comput. Complex Appl. 1(2), 64 (2015)Google Scholar
  52. 52.
    Golbabai, A., Nikan, O.: A meshless method for numerical solution of fractional differential equations. Casp. J. Math. Sci. 4(1), 1 (2015)MathSciNetGoogle Scholar
  53. 53.
    Golbabai, A., Nikan, O.: A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model. Comput. Econ. 1(1), 1–23 (2019).  https://doi.org/10.1007/s10614-019-09880-4 Google Scholar
  54. 54.
    Golbabai, A., Nikan, O., Molavai Arabshai, M.: Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers. TWMS J. Pure Appl. Math. 10(1) (2019)Google Scholar
  55. 55.
    Golbabai, A., Nikan, O., Tousi, J.R.: Note on using radial basis functions method for solving nonlinear integral equations. Commun. Numer. Anal. 2016(2), 81 (2016)MathSciNetGoogle Scholar
  56. 56.
    Golbabai, A., Mammadov, M., Seifollahi, S.: Solving a system of nonlinear integral equations by an RBF network. Comput. Math. Appl. 57(10), 1651 (2009)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Maleknejad, K., Mohammadikia, H., Rashidinia, J.: Analysis and solution of a class of nonlinear two-dimensional volterra-fredholm integral equations via hybrid of radial basis functions. Iran J. Sci. Technol. A, 1–8 (2017)Google Scholar
  58. 58.
    Fasshauer, G.E.: RBF collocation methods as pseudospectral methods. In: Kassab, A., Brebbia, A., Divo, E., Poljak, D. (eds.) Boundary Elements XXVII, pp. 47–56. WIT Press, Southampton (2005)Google Scholar
  59. 59.
    Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45(1–4), 345 (2007)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Ferreira, A., Fasshauer, G.: Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comput. Methods Appl. Mech. Eng. 196(1–3), 134 (2006)zbMATHGoogle Scholar
  61. 61.
    Ferreira, A., Fasshauer, G.: Analysis of natural frequencies of composite plates by an RBF-pseudospectral method. Compos. Struct. 79(2), 202 (2007)Google Scholar
  62. 62.
    Roque, C.M., Ferreira, A.J., Neves, A.M., Fasshauer, G.E., Soares, C.M., Jorge, R.M.N.: Dynamic analysis of functionally graded plates and shells by radial basis functions. Mech. Adv. Mater. Struct. 17(8), 636 (2010)Google Scholar
  63. 63.
    Roque, C., Ferreira, A., Neves, A., Soares, C.M., Reddy, J., Jorge, R.: Transient analysis of composite and sandwich plates by radial basis functions. J. Sandw. Struct. Mater. 13(6), 681 (2011)Google Scholar
  64. 64.
    Uddin, M., Ali, S.: RBF-PS method and fourier pseudospectral method for solving stiff nonlinear partial differential equations. Math. Sci. Lett. 2(1), 55 (2012)Google Scholar
  65. 65.
    Uddin, M., Jan, R.: RBF-PS scheme for the numerical solution of the complex modified korteweg-de vries equation. Appl. Math. Inf. Sci. Lett. 1(1), 9 (2013)Google Scholar
  66. 66.
    Sun, Zz, Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193 (2006)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533 (2007)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191(1), 12 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.School of MathematicsIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations