Advertisement

Boundary-Layer Separations of Mixed Convection Flow Past an Isothermal Circular Cylinder

  • Nepal Chandra RoyEmail author
  • Tajnin Rahman
  • Salaika Parvin
Original Paper
  • 75 Downloads

Abstract

This study reveals the boundary-layer separations of unsteady mixed convection flow of incompressible fluid past a circular cylinder which is kept at a constant temperature. The governing equations are made dimensionless using an appropriate transformation. These equations are solved with the use of finite difference method. We also solve the problem using perturbation method for small time and local non-similarity method for long time. Results show that numerical solutions agree well with the series solutions obtained by perturbation method for small time and asymptotic method for long time. For an increase of Richardson number and Prandtl number, the local friction factor and the rate of heat transfer increases. Besides, the streamlines and isotherms reveal that when the Richardson number and the Prandtl number are increased, the point of separation of boundary-layer reduces and the size of vortex decreases. Moreover, the larger values of Richardson number thicken the thermal boundary layer whereas the reverse characteristic is observed for higher Prandtl numbers.

Keywords

Boundary-layer separation Mixed convection Circular cylinder 

Notes

References

  1. 1.
    Acrivos, A.: On the combined effect of forced and free convection heat transfer in laminar boundary layer flows. Chem. Eng. Sci. 21, 343–352 (1966)CrossRefGoogle Scholar
  2. 2.
    Sparrow, E.M., Lee, L.: Analysis of mixed convection about a horizontal cylinder. Int. J. Heat Mass Transf. 19, 229–232 (1976)CrossRefGoogle Scholar
  3. 3.
    Merkin, J.H.: Oscillatory free convection from an infinite horizontal cylinder. J. Fluid Mech. 30, 561–575 (1967)CrossRefGoogle Scholar
  4. 4.
    Merkin, J.H.: Mixed convection from a horizontal circular cylinder. Int. J. Heat Mass Transf. 20, 73–77 (1977)CrossRefGoogle Scholar
  5. 5.
    Lin, F.N., Chao, B.T.: Laminar free convection over two-dimensional and axisymmetric bodies of arbitrary contour. J. Heat Transf. 96, 435–442 (1974)CrossRefGoogle Scholar
  6. 6.
    Merkin, J.H.: Free convection boundary layers on cylinders of elliptic cross section. J. Heat Transf. 99, 453–457 (1977)CrossRefGoogle Scholar
  7. 7.
    Ingham, D.B.: Free-convection boundary layer on an isothermal horizontal cylinder. J. Appl. Math. Phys. 29, 871–883 (1978)zbMATHGoogle Scholar
  8. 8.
    Badr, H.M.: A theoretical study of laminar mixed convection from a horizontal cylinder in a cross stream. Int. J. Heat Mass Transf. 26, 639–653 (1983)CrossRefGoogle Scholar
  9. 9.
    Badr, H.M.: Laminar combined convection from a horizontal cylinder parallel and contra flow regimes. Int. J. Heat Mass Transf. 27, 15–27 (1984)CrossRefGoogle Scholar
  10. 10.
    Hossain, M.A., Kutubuddin, M., Pop, I.: Radiation–conduction interaction on mixed convection from a horizontal circular cylinder. Heat Mass Transf. 35, 307–314 (1999)CrossRefGoogle Scholar
  11. 11.
    Aldoss, T.K., Ali, Y.D., Al-Nimr, M.A.: MHD mixed convection from a horizontal circular cylinder. Numer. Heat Transf. 30, 379–396 (1996)CrossRefGoogle Scholar
  12. 12.
    Hossain, M.A., Hussain, S., Rees, D.A.S.: Influence of fluctuating surface temperature and concentration on natural convection flow from a vertical flat plate. J. Appl. Math. Mech. 81, 699–709 (2001)zbMATHGoogle Scholar
  13. 13.
    Nazar, R., Amin, N., Pop, I.: Free convection boundary layer flow on a horizontal circular cylinder with constant heat flux in a micro polar fluid. Int. J. Appl. Mech. Eng. 7, 409–431 (2002)zbMATHGoogle Scholar
  14. 14.
    Nazar, R., Amin, N., Pop, I.: Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux. Heat Mass Transf. 40, 219–227 (2004)CrossRefGoogle Scholar
  15. 15.
    Molla, M.M., Paul, S.C., Hossain, M.A.: Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation. Appl. Math. Model. 33, 3226–3236 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cheng, C.Y.: Natural convection boundary layer on a horizontal elliptical cylinder with constant heat flux and internal heat generation. Int. Commun. Heat Mass Transf. 36, 1025–1029 (2009)CrossRefGoogle Scholar
  17. 17.
    Hossain, A., Kamrujjaman, M., Gorla, R.S.R.: Fluctuating free convection flow along heated horizontal circular cylinders. Int. J. Fluid Mech. Res. 36, 207–230 (2009)CrossRefGoogle Scholar
  18. 18.
    Begum, N., Siddiqa, S., Ouazzi, A., Hossain, M.A., Gorla, R.S.R.: Natural convection and separation points of a non-Newtonian fluid along a rotating round-nosed body. J. Therm. Heat Transf. 32(4), 946–952 (2018)CrossRefGoogle Scholar
  19. 19.
    Hossain, M.A., Roy, N.C., Siddiqa, S.: Unsteady mixed convection dusty fluid flow past a vertical wedge due to small fluctuation in free stream and surface temperature. Appl. Math. Comput. 293, 480–492 (2017)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ali, A., Amin, N., Pop, I.: Unsteady mixed convection boundary layer from a circular cylinder in a micro polar fluid. Int. J. Chem. Eng., Article ID 417875 (2010)Google Scholar
  21. 21.
    Nazar, R., Tham, L., Pop, I., Ingham, D.B.: Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Transp. Porous Media 86, 517–536 (2011)CrossRefGoogle Scholar
  22. 22.
    Sarif, N.M., Salleh, M.Z., Nazar, R.: Mixed convection flow over a horizontal circular cylinder in a viscous fluid at the lower stagnation point with convective boundary conditions. Sci. Asia 42, 5–10 (2016)CrossRefGoogle Scholar
  23. 23.
    Kamrujjaman, M., Hossain, M.A., Alam, J.: Mixed convection flow along a horizontal circular cylinder with small amplitude oscillation in surface temperature and free stream. Mech. Eng. Res. 6, 34–47 (2016)CrossRefGoogle Scholar
  24. 24.
    Roy, N.C., Hossain, M.A.: Unsteady magnetohydrodynamic mixed convection flow of micropolar fluid past a permeable sphere. J. Thermophys. Heat Transf. 31, 686–699 (2017)CrossRefGoogle Scholar
  25. 25.
    Roy, N.C., Rahman, T., Hossain, M.A., Gorla, R.S.R.: Boundary-layer characteristics of compressible flow past a heated cylinder with viscous dissipation. J. Thermophys. Heat Transf. 33, 10–22 (2019)CrossRefGoogle Scholar
  26. 26.
    Blottner, F.G.: Finite difference methods of solution of the boundary-layer equations. AIAA J. 8, 193–205 (1970)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  • Nepal Chandra Roy
    • 1
    Email author
  • Tajnin Rahman
    • 1
  • Salaika Parvin
    • 1
  1. 1.Department of MathematicsUniversity of DhakaDhakaBangladesh

Personalised recommendations