Advertisement

Lie Analysis and Novel Analytical Solutions for the Time-Fractional Coupled Whitham–Broer–Kaup Equations

  • R. SadatEmail author
  • M. M. Kassem
Original Paper

Abstract

The Lie point symmetries for the fractional Riemann–Liouville system are used to reduce Fractional Whitham–Broer–Kaup (FWBK) equations to nonlinear fractional ordinary differential equations using the prolongation theorem. FWBK describe the propagation of fluid with different dispersive coefficients in shallow waters. Through the conformable derivative, we apply the integrating factors and Riccati–Bernoulli sub-equation methods. New solutions have been generated. Comparison with previous works has been presented. A mathematical modeling for the long water wave motion between two non-mixed fluids was also studied.

Keywords

Time fractional Whitham–Broer–Kaup equations Conformable derivatives Lie symmetry Riccati–Bernoulli (RB) sub-equation Integrating factors Explicit solutions 

Notes

Acknowledgements

We would thank the editing board and reviewers for their valuable response and fast reply that enhance the obtained results.

References

  1. 1.
    Sun, H., et al.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–223 (2018)CrossRefGoogle Scholar
  2. 2.
    Baleanu, D., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation. Open Phys. 16(1), 302–310 (2018)CrossRefGoogle Scholar
  3. 3.
    Baleanu, D., Yusuf, A., Aliyu, A.I.: Optimal system, nonlinear self-adjointness and conservation laws for the generalized shallow water wave equation. Open Phys. 16(1), 364–370 (2018)CrossRefGoogle Scholar
  4. 4.
    Baleanu, D., Yusuf, A., Aliyu, A.I.: Space-time fractional Rosenou–Haynam equation: lie symmetry analysis, explicit solutions, and conservation laws. Adv. Differ. Equ. 2018(1), 46 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yusuf, A., Aliyu, A.I.: Dark optical and other soliton solutions for the three different nonlinear Schrödinger equations. Opt. Quant. Electron. 49(11), 354–372 (2017)CrossRefGoogle Scholar
  6. 6.
    Yusuf, A., Aliyu, A.I., Baleanu, D.: Fractional optical solitons for the conformable space–time nonlinear Schrödinger equation with Kerr law nonlinearity. Opt. Quant. Electron. 50(3), 139–153 (2018)CrossRefGoogle Scholar
  7. 7.
    Yusuf, A., Aliyu, A.I., Baleanu, D.: Soliton solutions, and stability analysis for some conformable nonlinear partial differential equations in mathematical physics. Opt. Quant. Electron. 50(4), 190–204 (2018)CrossRefGoogle Scholar
  8. 8.
    Ali, M.R., Hadhoud, A.R.: Hybrid orthonormal bernstein and block-pulse functions wavelet scheme for solving the 2D bratu problem. Results Phys. 12, 525–530 (2019)CrossRefGoogle Scholar
  9. 9.
    Inc, M., et al.: Optical solitary wave solutions for the conformable perturbed nonlinear schrödinger equation with power law nonlinearity. J. Adv. Phys. 7(1), 49–57 (2018)CrossRefGoogle Scholar
  10. 10.
    Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. A 299(1456), 6–25 (1967)CrossRefGoogle Scholar
  11. 11.
    Broer, L.: Approximate equations for long water waves. Appl. Sci. Res. 31(5), 377–395 (1975)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaup, D.: A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 54(2), 396–408 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kilic, B., et al.: On soliton solutions of the Wu–Zhang system. Open Phys. 14(1), 76–80 (2016)CrossRefGoogle Scholar
  15. 15.
    Mirzazadeh, M., et al.: Solitons and other solutions to Wu–Zhang system. Nonlinear Anal. Modell. Control 22(4), 441–458 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xiao, H., Young, Y.L., Prévost, J.H.: Parametric study of breaking solitary wave induced liquefaction of coastal sandyslopes. Ocean Eng. 37(17–18), 1546–1553 (2010)CrossRefGoogle Scholar
  17. 17.
    Tchier, F., et al.: Time fractional third-order variant Boussinesq system: symmetry analysis, explicit solutions, conservation laws, and numerical approximations. Eur. Phys. J. Plus 8(90), 1–15 (2018)Google Scholar
  18. 18.
    Baleanu, D., et al.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation. Nonlinear Anal. Model. Control 22(6), 861–876 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Baleanu, D., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 59, 222–234 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bruzon, M., et al.: The symmetry reductions of a turbulence model. J. Phys. A: Math. Gen. 34(18), 3751 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sadat, R., Kassem, M.: Explicit Solutions for the (2 + 1)-Dimensional Jaulent–Miodek equation using the integrating factors method in an unbounded domain. Math. Comput. Appl. 23(1), 15–25 (2018)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Wang, G.-W., Liu, X.-Q., Zhang, Y.-Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2321–2326 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tian, B., Qiu, Y.: Exact and explicit solutions of Whitham–Broer–Kaup equations in shallow water. Pure Appl. Math. J. 5(6), 174–180 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhang, Z., Yong, X., Chen, Y.: Symmetry analysis for Whitham–Broer–Kaup equations. J. Nonlinear Math. Phys. 15(4), 383–397 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ghehsareh, H.R., Majlesi, A., Zaghian, A.: Lie symmetry analysis and conservation laws for time fractional coupled Whitham–Broer–Kaup equations. UPB Sci. Bull. Ser. A Appl. Math. Phys. 80(3), 153–168 (2018)MathSciNetGoogle Scholar
  26. 26.
    Ray, S.S., Sahoo, S.: Invariant analysis and conservation laws of (2+1) dimensional time-fractional ZK–BBM equation in gravity water waves. Comput. Math. Appl. 75, 2271–2279 (2018) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jefferson, G., Carminati, J.: FracSym: automated symbolic computation of Lie symmetries of fractional differential equations. Comput. Phys. Commun. 185(1), 430–441 (2014)CrossRefGoogle Scholar
  28. 28.
    Khalil, R., et al.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, C.S.: Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 92–94 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Iqbal, M.: A fractional Whitham–Broer–Kaup equation and its possible application to Tsunami prevention. Thermal Sci. 21(4), 1847–1855 (2017)CrossRefGoogle Scholar
  31. 31.
    Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gepreel, K.A., et al.: Analytic solutions for nonlinear evolution equations in mathematical physics. Int. J. Pure Appl. Math. 106(4), 1003–1016 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, Physics and Mathematics DepartmentZagazig UniversityAsh SharqiyahEgypt

Personalised recommendations