Advertisement

Generalized Fibonacci Operational Collocation Approach for Fractional Initial Value Problems

  • A. G. Atta
  • G. M. Moatimid
  • Y. H. Youssri
Original Paper
  • 60 Downloads

Abstract

A numerical algorithm for solving multi-term fractional differential equations (FDEs) is established herein. We established and validated an operational matrix of fractional derivatives of the generalized Fibonacci polynomials (GFPs). The proposed numerical algorithm is mainly built on applying the collocation method to reduce the FDEs with its initial conditions into a system of algebraic equations in the unknown expansion coefficients. Output of the numerical results asserted that our developed algorithm is applicable, efficient and accurate.

Keywords

Fractional differential equations Generalized Fibonacci sequence Spectral methods 

Mathematics Subject Classification

11B39 65N35 34A08 34A12 

Notes

References

  1. 1.
    Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  2. 2.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001)zbMATHGoogle Scholar
  3. 3.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations, Algorithms for Engineers and Scientists. Springer, Berlin (2009)CrossRefGoogle Scholar
  4. 4.
    Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62(5), 2364–2373 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Youssri, Y.H., Abd-Elhameed, W.M.: Numerical spectral Legendre–Galerkin algorithm for solving time fractional Telegraph equation. Rom. J. Phys. 63, 107 (2018)Google Scholar
  6. 6.
    Abd-Elhameed, W.M., Youssri, Y.H.: Spectral Tau Algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran. J. Sci. Technol. 1-12 (2017)Google Scholar
  7. 7.
    Abd-Elhameed, W.M., Youssri, Y.H.: Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput. Appl. Math. 1-25 (2017)Google Scholar
  8. 8.
    Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2017)CrossRefGoogle Scholar
  9. 9.
    Abd-Elhameed, W.M., Youssri, Y.H.: A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials. Entropy 18(10), 345 (2016)CrossRefGoogle Scholar
  10. 10.
    Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the riesz fractional advection dispersion equation. IMA J. Appl. Math. 73(6), 850–872 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216(11), 3329–3334 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sweilam, N.H., Khader, M.M., Nagy, A.M.: Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 235(8), 2832–2841 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189(1), 541–548 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. Abstract Appl. Anal. (2014), 626275 (2014)Google Scholar
  16. 16.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic, New York (1998)zbMATHGoogle Scholar
  17. 17.
    Abd-Elhameed, W.M., Zeyada, N.A.: A generalization of generalized Fibonacci and generalized Pell numbers. Int. J. Math. Educ. Sci. Technol. 48(1), 102–107 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Abd-Elhameed, W.M., Zeyada, N.A.: New identities involving generalized Fibonacci and generalized Lucas numbers. Indian J. Pure Appl. Math. 49(3), 527–537 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35(12), 5662–5672 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jameson, G.J.O.: The incomplete gamma functions. Math. Gaz. 100, 298–306 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038–6051 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationAin Shams University, RoxyCairoEgypt
  2. 2.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations