Advertisement

Modelling the Trend of HIV Transmission and Treatment in Kenya

  • E. O. Omondi
  • R. W. Mbogo
  • L. S. Luboobi
Original Paper
  • 23 Downloads

Abstract

HIV infection remains a major contributor to disease burden and a global leading cause of death. Although progress is being made to control HIV infections, Kenya still remains one of the high HIV burden countries in Sub-Sahara Africa. A deterministic model was proposed to describe the trend of HIV infection in Kenya and suggest some control strategies. The basic reproduction number, \(\mathcal {R}_0\), is derived and global asymptotic stability analysis of the disease-free equilibrium carried out. We proved that HIV infections will be contained if the reproduction number is kept below one. Routine data from national survey is used to assess the variation of the new HIV infections in Kenya. Based on this data, least squares method was used to estimate the unknown parameters. The HIV incidence shows of an infection at an endemic state implying of ceaseless problem. Furthermore, improvement in immunological status of the HIV patients on ART due to attrition, may lead to decline in HIV infection and be beneficial to the disease control. The findings suggested that treatment with ART greatly aids the decline in HIV infections hence strengthening its intensity will effectively contribute to the disease control.

Keywords

HIV transmission Reproduction number Least squares curve fitting Simulations 

Notes

Acknowledgements

The authors acknowledge, with thanks, the support of Institute of Mathematical Sciences, Strathmore University for the production of this manuscript. Authors are also very grateful to the referees and the editor for the constructive and valuable comments and recommendations and for making us pay attention to certain references.

Author Contributions

All authors worked together to produce the results and read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    AIDS: AIDS info. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents (2015). Retrieved April, 2017 from https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv-guidelines/458/plasma-hiv-1-rna--viral-load--and-cd4-count-monitoring
  2. 2.
    Baggaley, R.F., Ferguson, N.M., Garnett, G.P.: The epidemiological impact of antiretroviral use predicted by mathematical models: a review. Emerg. Themes Epidemiol. 2(1), 9 (2005)CrossRefGoogle Scholar
  3. 3.
    Baryarama, F., Mugisha, J., Luboobi, L.: A mathematical model for the dynamics of HIV/AIDS with gradual behaviour change. Comput. Math. Methods Med. 7(1), 15–26 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bórquez, A., Cori, A., Pufall, E.L., Kasule, J., Slaymaker, E., Price, A., Elmes, J., Zaba, B., Crampin, A.C., Kagaayi, J.: The incidence patterns model to estimate the distribution of new HIV infections in Sub-Saharan Africa: development and validation of a mathematical model. PLoS Med. 13(9), e1002121 (2016)CrossRefGoogle Scholar
  5. 5.
    Heffernan, J., Smith, R., Wahl, L.: Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2(4), 281–293 (2005)CrossRefGoogle Scholar
  6. 6.
    Isdory, A., Mureithi, E.W., Sumpter, D.J.: The impact of human mobility on HIV transmission in Kenya. PLoS ONE 10(11), e0142805 (2015)CrossRefGoogle Scholar
  7. 7.
    Kiss, I.Z., Cassell, J., Recker, M., Simon, P.L.: The impact of information transmission on epidemic outbreaks. Math. Biosci. 225(1), 1–10 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    KNBS: Kenya National Bureau of Statistics (2017). Retrieved September, 2017 from https://www.knbs.or.ke/
  9. 9.
    KNBS2: Kenya 1900. Population Pyramids of the World from 1950 to 2100 (2017). Retrieved September, 2017 from https://www.populationpyramid.net/kenya/1990/
  10. 10.
    La Salle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)CrossRefGoogle Scholar
  11. 11.
    Liu, R., Wu, J., Zhu, H.: Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput. Math. Methods Med. 8(3), 153–164 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    NACC: Kenya National Aids Control Council. Kenya AIDS response progress report 2016 (2016). Retrieved April, 2017 from http://nacc.or.ke/wp-content/uploads/2016/11/Kenya-AIDS-Progress-Report_web.pdf
  13. 13.
    NACC: Kenya National Aids Control Council. Kenya National AIDS Control Council ’Kenya AIDS Strategic Framework 2014/2015–2018/2019’ (2017a). Retrieved April, 2017 from http://www.undp.org/content/dam/kenya/docs/Democratic%20Governance/KENYA%20AIDS%20STRATEGIC%20FRAMEWORK.pdf
  14. 14.
    NACC: National AIDS Control Council and the National AIDS and STD Control Programme,March 2012. HIV/AIDS report (2017b). Retrieved January, 2018 from http://guidelines.health.go.ke:8000/media/National_HIV_Estimates_for_Kenya_2011-2015.pdf
  15. 15.
    Naresh, R., Tripathi, A., Sharma, D.: Modelling and analysis of the spread of aids epidemic with immigration of HIV infectives. Math. Comput. Model. 49(5), 880–892 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nyabadza, F., Njagarah, J.B., Smith, R.J.: Modelling the dynamics of crystal meth (tik) abuse in the presence of drug-supply chains in South Africa. Bull. Math. Biol. 75(1), 24–48 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Okango, E., Mwambi, H., Ngesa, O.: Spatial modeling of HIV and HSV-2 among women in Kenya with spatially varying coefficients. BMC Public Health 16(1), 355–368 (2016)CrossRefGoogle Scholar
  18. 18.
    Okongo, M., Kirimi, J., Murwayi, A., Muriithi, D.: Mathematical analysis of a comprehensive HIV/ AIDS model: treatment versus vaccination. Appl. Math. Sci. 7(54), 2687–2707 (2013)Google Scholar
  19. 19.
    Okosun, K., Makinde, O., Takaidza, I.: Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Appl. Math. Model. 37(6), 3802–3820 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Olney, J.J., Braitstein, P., Eaton, J.W., Sang, E., Nyambura, M., Kimaiyo, S., McRobie, E., Hogan, J.W., Hallett, T.B.: Evaluating strategies to improve HIV care outcomes in Kenya: a modelling study. Lancet HIV 3(12), e592–e600 (2016)CrossRefGoogle Scholar
  21. 21.
    Omondi, E.O., Mbogo, R., Luboobi, L.: Mathematical modelling of the impact of testing, treatment and control of HIV transmission in Kenya. Cogent Math. Stat. 5(1), 1475590 (2018a)Google Scholar
  22. 22.
    Omondi, E.O., Mbogo, R.W., Luboobi, L.S.: Mathematical analysis of sex-structured population model of HIV infection in Kenya. Lett. Biomath. 5(1), 174–194 (2018b)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Omondi, E.O., Nyabadza, F., Bonyah, E., Badu, K.: Modeling the infection dynamics of onchocerciasis and its treatment. J. Biol. Syst. 25(2), 247–277 (2017a)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Omondi, E.O., Orwa, T.O., Nyabadza, F.: Application of optimal control to the onchocerciasis transmission model with treatment. Math. Biosci. 297(2018), 43–57 (2017b)MathSciNetzbMATHGoogle Scholar
  25. 25.
    OPTIONS: OPTIONS Country Situation Analysis Interim Findings: Kenya. FSG in partnership with LVCT Health (2016). Retrieved August, 2016 from http://www.prepwatch.org/wp-content/uploads/2016/05/Situation_Analysis_Kenya.pdf
  26. 26.
    Sahu, G.P., Dhar, J.: Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity. J. Math. Anal. Appl. 421(2), 1651–1672 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Smith, H.L., Waltman, P.: The Theory of the Chemostat, vol. 13. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  28. 28.
    UNAIDS: UNAIDS. HIV and AIDS estimates (2015). Retrieved April, 2017 from http://www.unaids.org/en/regionscountries/countries/kenya
  29. 29.
    United Nations Programme on HIV/AIDS, J.: 90–90–90: an ambitious treatment target to help end the AIDS epidemic. Joint United Nations Programme on HIV AIDS, Geneva, Switzerland (2014)Google Scholar
  30. 30.
    Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    WB: World Bank Data. Birth rate, crude (per 1000 people) (2017). Retrieved October, 2017 from https://data.worldbank.org/indicator/SP.DYN.CBRT.IN
  32. 32.
    Williams, B.G.: Optimizing control of HIV in Kenya (2014). arXiv preprint arXiv:1407.7801
  33. 33.
    Wodarz, D., Nowak, M.A.: Mathematical models of HIV pathogenesis and treatment. BioEssays 24(12), 1178–1187 (2002)CrossRefGoogle Scholar
  34. 34.
    Yan, X., Zou, Y., Li, J.: Optimal quarantine and isolation strategies in epidemics control. World J. Model. Simul. 3(3), 202–211 (2007)Google Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Institute of Mathematical SciencesStrathmore UniversityNairobiKenya

Personalised recommendations