Lie Symmetry Reductions and Solitary Wave Solutions of Modified Equal Width Wave Equation

  • Rajan Arora
  • Antim ChauhanEmail author
Original Paper


In this paper, we obtained the exact and solitary wave solutions of modified equal width wave equation by using Lie symmetry method. With the help of MAPLE software we obtained infinitesimal generators and commutation table. Lie symmetry transformation has been used for converting nonlinear partial differential equation into nonlinear ordinary differential equation. Then, we used tanh method and power series method for solving reduced nonlinear ordinary differential equations. Convergence of power series solution has also been shown.


Modified equal width wave (MEWW) equation Lie symmetry analysis method Tanh method Power series solution Symbolic computation 



The second author is thankful to the “University Grants Commission (UGC)” India for financial support to carry out her research work.


  1. 1.
    Karakoc, S.B.G., Geyikli, T.: Numerical solution of the modified equal width wave equation. Int. J. Differ. Equ. 2012, 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Essa, Y.M.A.: Multigrid method for the numerical soluton of the modified equal width wave equation. Appl. Math. 7, 1140–1147 (2016)CrossRefGoogle Scholar
  3. 3.
    Gardner, L.R.T., Gardner, G.A.: Solitary waves of the regularised long-wave equation. J. Comput. Phys. 91(2), 441–459 (1990)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gardner, L.R.T., Gardner, G.A.: Solitary waves of the equal width wave equation. J. Comput. Phys. 101(1), 218–223 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Morrison, P.J., Meiss, J.D., Cary, J.R.: Scattering of regularized-long-wave solitary waves. Physica D. Nonlinear Phenomena 11(3), 324–336 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gardner, L.R.T., Gardner, G.A., Geyikli, T.: The boundary forced MKdV equation. J. Comput. Phys. 113(1), 5–12 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Abdulloev, Kh O., Bogolubsky, I.L., Makhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56(6), 427–428 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Geyikli, T., Karakoc, S.B.G.: Septic B-spline collocation method for numerical solution of modified equal width wave equation. Appl. Math. 2(6), 739–749 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Geyikli, T., Karakoc, S.B.G.: Petro-Galerkin method with cubic bsplines for solving the MEW equation. Bull. Belgian Math. Soc. Simon Stevin 19, 215–227 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Arora, R., Siddiqui, Md J., Singh, V.P.: Solution of modified equal width wave equation, its variant and non-homogeneous Burgers’ equation by RDT method. Am. J. Comput. Appl. Math. 1(2), 53–56 (2011)CrossRefGoogle Scholar
  11. 11.
    Saka, B.: Algorithms for numerical solution of the modified equal width wave equation using collocation method. Math. Comput. Model. 45(9–10), 1117–2007 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wazwaz, A.M.: The tanh and sine–cosine methods for a reliable treatment of the modified equal width wave equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 11(2), 148–160 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Din, S.T.M., Yildirim, A., Berberler, M.E., Hosseini, M.M.: Numerical solution of the modified equal width wave equation. World Appl. Sci. J. 8(7), 792–798 (2010)Google Scholar
  14. 14.
    Hassan, H.N.: An accurate numerical solution for the modified equal width wave equation using the Fourier pseudo-spectral method. J. Appl. Math. Phys. Lett. A 4, 1054–1067 (2016)CrossRefGoogle Scholar
  15. 15.
    Esen, A., Kutluay, S.: Solitary wave solutions of the modified equal width wave equation. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1538–1546 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, H., Chen, L., Wang, H.: Exact travelling wave solutions of the modified equal width wave equation via the dynamical system method. Nonlinear Anal. Differ. Equ. 4(1), 9–15 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of (3+1) dimensional Yu–Toda–Sasa–Fukuyama equation in mathematical physics. Comput. Math. Appl. 73, 253–260 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, S., Hua, C.: Lie symmetry reductions and exact solutions of a coupled KdV–Burgers equation. Appl. Math. Comput. 234, 579–583 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Wang, G., Kara, A.H., Fakhar, K., Guzman, J.V.: Group analysis. Exact solutions and conservation laws of a generalized fifth order KdV equation. Chaos Solitons Fractals 86, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kumar, M., Kumar, R., Kumar, A.: Some more similarity solutions of the (2+1)-dimensional BLP system. Comput. Math. Appl. 70, 212–221 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kumar, M., Kumar, R., Kumar, A.: On similarity solutions of Zabolotskaya–Khokhlov equation. Comput. Math. Appl. 68, 454–463 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, pp. 30–130. Springer, New York (1993)CrossRefGoogle Scholar
  23. 23.
    Bluman, G., Cheviakov, A.: Applications of Symmetry Methods to Partial Differential Equations. Appl. Math. Sci., vol. 168, p. 417. Springer, New York (2010)zbMATHGoogle Scholar
  24. 24.
    Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)CrossRefGoogle Scholar
  25. 25.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)zbMATHGoogle Scholar
  26. 26.
    Goyal, N., Wazwaz, A.M., Gupta, R.K.: Applications of maple software to derive exact solutions of generalized fifth-order Korteweg–De Vries equation with time-dependent coefficients. Rom. Rep. Phys. 68(1), 99–111 (2016)Google Scholar
  27. 27.
    Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wazwaz, A.M.: Partial Differential Equation and Solitary Wave Theory. Nonlinear Physical Science. Springer, New York (2009)CrossRefGoogle Scholar
  29. 29.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. China Machine Press, Beijing (2004)zbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of Applied Science and EngineeringIIT RoorkeeSaharanpurIndia

Personalised recommendations