Advertisement

Dynamics of a Delayed Diffusive HBV Infection Model with Capsids and CTL Immune Response

  • Kalyan Manna
Original Paper
  • 65 Downloads

Abstract

In this article, a delayed reaction-diffusion model of hepatitis B virus (HBV) infection with HBV DNA-containing capsids and cytotoxic T lymphocyte (CTL) immune response is presented and investigated by incorporating the spatial mobility of both capsids and virions. Also, the discrete time delays in the production of productively infected hepatocytes and matured capsids are taken into account in this model. First, the well-posedness of the concerned model is established in terms of existence, uniqueness, non-negativity and boundedness of solutions. The threshold conditions in terms of basic reproduction number \(R_{0}\) and immune response reproduction number \(R_{CTL}\) for global stability of the three spatially homogeneous steady states are established by constructing appropriate Lyapunov functions and by using linearization technique. We show that disease-free steady state, immune-free steady state and interior steady state with CTL immune response are globally asymptotically stable if \(R_{0}\le 1\), \(R_{CTL}\le 1<R_{0}\) and \(R_{CTL}>1\), respectively. Finally, several numerical simulations are carried out in order to illustrate the theoretical results obtained.

Keywords

HBV infection Diffusion Delay Global stability Lyapunov function Numerical simulation 

Notes

Acknowledgements

I gratefully acknowledge the financial support provided by Science and Engineering Research Board, Government of India for pursuing my post-doctoral research. I convey my gratitude to the learned reviewers for their valuable comments and suggestions.

References

  1. 1.
    Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Perelson, A.S.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247(1), 23–35 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ribeiro, R.M., Lo, A., Perelson, A.S.: Dynamics of hepatitis B virus infection. Microbes Infect. 4(8), 829–835 (2002)CrossRefGoogle Scholar
  3. 3.
    Lewin, S., Walters, T., Locarnini, S.: Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies. Antivir. Res. 55(3), 381–396 (2002)CrossRefGoogle Scholar
  4. 4.
    Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci USA 93(9), 4398–4402 (1996)CrossRefGoogle Scholar
  5. 5.
    Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272(5258), 74–79 (1996)CrossRefGoogle Scholar
  6. 6.
    Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mt. J. Math. 38(5), 1573–1585 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, K., Fan, A., Torres, A.: Global properties of an improved hepatitis B virus model. Nonlinear Anal. Real World Appl. 11(4), 3131–3138 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hews, S., Eikenberry, S., Nagy, J.D., Kuang, Y.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biol. 60(4), 573–590 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, J., Wang, K., Yang, Y.: Dynamical behaviors of an HBV infection model with logistic hepatocyte growth. Math. Comput. Model. 54(1–2), 704–711 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Manna, K., Chakrabarty, S.P.: Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 383–395 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci USA 93(14), 7247–7251 (1996)CrossRefGoogle Scholar
  12. 12.
    Gourley, S.A., Kuang, Y., Nagy, J.D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2(2), 140–153 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y.: The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Math. Biosci. Eng. 6(2), 283–299 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Manna, K., Chakrabarty, S.P.: Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids. Comput. Appl. Math. 36(1), 525–536 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pang, J., Cui, J., Hui, J.: The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn. 67(1), 723–734 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, J., Tian, X.: Global stability of a delay differential equation of hepatitis B virus infection with immune response. Electron. J. Differ. Equ. 94, 1–11 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Manna, K.: Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response. Int. J. Appl. Comput. Math. 3(3), 2323–2338 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Britton, N.F.: Essential Mathematical Biology. Springer, London (2003)CrossRefGoogle Scholar
  19. 19.
    Funk, G.A., Jansen, V.A.A., Bonhoeffer, S., Killingback, T.: Spatial models of virus-immune dynamics. J. Theor. Biol. 233(2), 221–236 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, K., Wang, W.: Propagation of HBV with spatial dependence. Math. Biosci. 210(1), 78–95 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, K., Wang, W., Song, S.: Dynamics of an HBV model with diffusion and delay. J. Theor. Biol. 253(1), 36–44 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gan, Q., Xu, R., Yang, P., Wu, Z.: Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J. Appl. Math. 75(3), 392–417 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Xu, R., Ma, Z.: An HBV model with diffusion and time delay. J. Theor. Biol. 257(3), 499–509 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chí NC, Vales EÁ, Almeida GG (2012), Analysis of a HBV model with diffusion and time delay. J. Appl. Math. Article ID 578561, 25 pagesGoogle Scholar
  25. 25.
    Zhang, Y., Xu, Z.: Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response. Nonlinear Anal. Real World Appl. 15, 118–139 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hattaf, K., Yousfi, N.: Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response. Comput. Appl. Math. 34(3), 807–818 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hattaf, K., Yousfi, N.: A generalized HBV model with diffusion and two delays. Comput. Math. Appl. 69(1), 31–40 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hattaf, K., Yousfi, N.: Global stability for reaction-diffusion equations in biology. Comput. Math. Appl. 66(8), 1488–1497 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shaoli, W., Xinlong, F., Yinnian, H.: Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence. Acta Math. Sci. 31(5), 1959–1967 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Manna, K., Chakrabarty, S.P.: Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids. J. Differ. Equ. Appl. 21(10), 918–933 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Manna, K.: Dynamics of a diffusion-driven HBV infection model with capsids and time delay. Int. J. Biomath. 10(5), 1750062 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xu, J., Geng, Y., Hou, J.: A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate. Comput. Math. Appl. 74(8), 1782–1798 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, S., Zhang, J., Xu, F., Song, X.: Dynamics of virus infection models with density-dependent diffusion. Comput. Math. Appl. 74(10), 2403–2422 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kang, C., Miao, H., Chen, X., Xu, J., Huang, D.: Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response. Adv. Differ. Equ. (2017).  https://doi.org/10.1186/s13662-017-1332-x
  35. 35.
    Miao, H., Teng, Z., Abdurahman, X., Li, Z.: Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response. Comput. Appl. Math. (2017).  https://doi.org/10.1007/s40314-017-0543-9 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Geng, Y., Xu, J., Hou, J.: Discretization and dynamic consistency of a delayed and diffusive viral infection model. Applied Mathematics and Computation 316, 282–295 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Rhode Island (1998)zbMATHGoogle Scholar
  38. 38.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  39. 39.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer-Verlag, Berlin, New York (1981)CrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations