Advertisement

Explicit Exact Solutions for Variable Coefficient Gardner Equation: An Application of Riccati Equation Mapping Method

  • Manjit Singh
  • R. K. Gupta
Original Paper
  • 31 Downloads

Abstract

Based on symbolic manipulation program Maple, the effectiveness of Riccati equation mapping method is demonstrated. By taking an example of variable coefficient Gardner equation explicit solutions including kink, soliton-like, periodic and rational solutions are obtained in quite a straightforward manner. The general solution of Riccati equation is used to construct solutions for variable coefficient Gardner equation.

Keywords

Gardner equation Riccati equation mapping method Explicit exact solutions 

Mathematics Subject Classification

35Q53 83C15 

References

  1. 1.
    Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54(6), 563–568 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kudryashov, N.: On types of nonlinear nonintegrable equations with exact solutions. Phys. Lett. 155(4), 269–275 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kudryashov, N.: Exact solutions of the generalized Kuramoto–Sivashinsky equation. Phys. Lett. 147(5), 287–291 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. 289(1–2), 69–74 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. 308(1), 31–36 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bluman, G., Anco, S.C.: Symmetry and Integration Methods for Differential Equations, vol. 154. Springer, New York (2002)zbMATHGoogle Scholar
  9. 9.
    Ablowitz, M.J., Clarkson, P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  10. 10.
    Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. In: Miura, R.M. (ed.) Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications. Lecture Notes in Mathematics, vol. 515. Springer, Berlin (2006)Google Scholar
  11. 11.
    Holloway, P.E., Pelinovsky, E., Talipova, T., Barnes, B.: A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 27(6), 871–896 (1997)CrossRefGoogle Scholar
  12. 12.
    Lamb, K.G., Yan, L.: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J. Phys. Oceanogr. 26(12), 2712–2734 (1996)CrossRefGoogle Scholar
  13. 13.
    Gear, J.A., Grimshaw, R.: A second-order theory for solitary waves in shallow fluids. Phys. Fluids (1958–1988) 26(1), 14–29 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, H., Slemrod, M.: KdV dynamics in the plasma-sheath transition. Appl. Math. Lett. 17(4), 401–410 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, J., Xu, T., Meng, X., Zhang, Y., Zhang, H., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336(2), 1443–1455 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhang, L.H., Dong, L.H., Yan, L.M.: Construction of non-travelling wave solutions for the generalized variable-coefficient Gardner equation. Appl. Math. Comput. 203(2), 784–791 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Xu, X.G., Meng, X.H., Gao, Y.T., Wen, X.Y.: Analytic N-solitary-wave solution of a variable-coefficient Gardner equation from fluid dynamics and plasma physics. Appl. Math. Comput. 210(2), 313–320 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336(2), 1443–1455 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, H., Li, J., Liu, L.: Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations. Nonlinear Dyn. 59(3), 497–502 (2010)CrossRefGoogle Scholar
  20. 20.
    Wei, L.: New exact solutions to some variable coefficients problems. Appl. Math. Comput. 217(4), 1632–1638 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kumar, S., Singh, K., Gupta, R.K.: Dynamics of internal waves in a stratified ocean modeled by the extended Gardner equation with time-dependent coefficients. Ocean Eng. 70, 81–87 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+ 1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37(5), 1335–1342 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 14(9), 3507–3529 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zheng, C.L.: Comments on the generalizing Riccati equation mapping method in nonlinear evolution equation: application to (2+ 1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 39(3), 1493–1495 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Yadavindra College of EngineeringPunjabi University Guru Kashi CampusTalwandi SaboIndia
  2. 2.Centre for Mathematics and Statistics School of Basic and Applied SciencesCentral University of PunjabBathindaIndia

Personalised recommendations