Advertisement

Generalization of Gegenbauer Wavelet Collocation Method to the Generalized Kuramoto–Sivashinsky Equation

  • İbrahim Çelik
Original Paper
  • 56 Downloads

Abstract

Gegenbauer (Ultraspherical) wavelets operational matrices play an important role for numeric solution of differential equations. In this study, operational matrices of rth integration of Gegenbauer wavelets are presented and general procedures of these matrices are correspondingly given first time. The proposed method is based on the approximation by the truncated Gegenbauer wavelet series. Algebraic equation system has been obtained by using the Chebyshev collocation points and solved. Proposed method has been applied to the Generalized Kuramoto–Sivashinsky equation using quasilinearization technique. Numerical examples showed that the method proposed in this study demonstrates the applicability and the accuracy of the Gegenbauer wavelet collocation method.

Keywords

Gegenbauer wavelets Collocation method Kuramoto–Sivashinsky equation Quasilinearization technique 

References

  1. 1.
    Cattani, C.: Fractional calculus and shannon wavelets. Math. Probl. Eng. 2012, 25, Article ID 502812 (2012)Google Scholar
  2. 2.
    Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Mohammadi, F.: Wavelet collocation method for solving multiorder fractional differential equations. J. Appl. Math. 2012, 19, Article ID 542401 (2012)Google Scholar
  3. 3.
    Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Fereidouni, F.: Two-dimensional Legendre wavelets forsolving fractional poisson equation with dirichlet boundary conditions. Eng. Anal. Bound. Elem. 37, 1331–1338 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cattani, C.: Shannon wavelets for the solution of integro-differential equations. Math. Probl. Eng. 2010, 22, Article ID 408418 (2010)Google Scholar
  5. 5.
    Cattani, C., Kudreyko, A.: Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Appl. Math. Comput. 215(12), 4164–4171 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 37–48 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gu, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27(7), 623–628 (1996)CrossRefGoogle Scholar
  8. 8.
    Lepik, U.: Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput. 185, 695–704 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Geng, W., Chen, Y., Li, Y., Wang, D.: Wavelet method for nonlinear partial differential equations of fractional order. Comput. Inf. Sci. 4(5), 28–35 (2011)Google Scholar
  10. 10.
    Hariharan, G., Kannan, K., Sharma, K.R.: Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hariharan, G., Kannan, K.: Haar wavelet method for solving FitzHugh-Nagumo equation. Int. J. Math. Stat. Sci. 2(2), 59–63 (2010)Google Scholar
  12. 12.
    Hariharan, G., Kannan, K.: A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hariharan, G.: An efficient wavelet analysis method to film-pore diffusion model arising in mathematical chemistry. J. Membr Biol. 247(4), 339–343 (2014)CrossRefGoogle Scholar
  14. 14.
    Hariharan, G., Kannan, K.: Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48(4), 1044–1061 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet quasilinearization approach for solving nonlinear boundary value problems. Am. J. Comput. Math. 1, 176–182 (2011)CrossRefGoogle Scholar
  16. 16.
    Çelik, İ.: Haar wavelet method for solving generalized Burgers-Huxley equation. Arab. J. Math. Sci. 18, 25–37 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Çelik, İ.: Haar wavelet approximation for magnetohydrodynamic flow equations. Appl. Math. Model. 37, 3894–3902 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maleknejad, K., Kajani, M.T., Mahmoudi, Y.: Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32(9/10), 1530–1539 (2003)CrossRefGoogle Scholar
  19. 19.
    Kajani, M.T., Vencheh, A.H.: Solving linear integro-differential equation with Legendre wavelet. Int. J. Comput. Math. 81(6), 719–726 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Razzaghi, M., Yousefi, S.: Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53, 185–192 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Razzaghi, M., Yousefi, S.: Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32(4), 495–502 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188, 417–426 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Babolian, E., Fattahzadeh, F.: Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188(1), 1016–1022 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kajania, M.T., Vencheha, A.H., Ghasemib, M.: The Chebyshev wavelets operational matrix of integration and product operation matrix. Int. J. Comput. Math. 86(7), 1118–1125 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Adibi, H., Assari, P.: Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math. Probl. Eng. 2010, 17, Article ID 138408 (2010)Google Scholar
  26. 26.
    Wang, Y.X., Fan, Q.B.: The second kind Chebyshev wavelet method for solving fractional differential equations. Appl. Math. Comput. 218, 8592–8601 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Li, M.: Chebyshev wavelets method for solution of nonlinear fractional integrodifferential equations in a large interval. Adv. Math. Phys. 2013, 12, Article ID 482083 (2013)Google Scholar
  28. 28.
    Hooshmandasl, M.R., Heydari, M.H., Ghaini, F.M.M.: Numerical solution of the one dimensional heat equation by using chebyshev wavelets method. Appl. Comput. Math. 1(6), 1–7 (2012)Google Scholar
  29. 29.
    Yang, C., Hou, J.: Chebyshev wavelets method for solving Bratu’s problem. Bound. Value Probl. 2013, 142 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hariharan, G.: An efficient wavelet based approximation method to water quality assessment model in a uniform channel. Ain Shams Eng. J. 5(2), 525–532 (2014)CrossRefGoogle Scholar
  31. 31.
    Çelik, İ.: Numerical solution of differential equations by using Chebyshev wavelet collocation method. Cankaya Univ. J. Sci. Eng. 10(2), 169–184 (2013)Google Scholar
  32. 32.
    Çelik, İ.: Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation. Math. Methods Appl. Sci. 39, 366–377 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Çelik, İ.: Free vibration of non-uniform Euler-Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method. Appl. Math. Model. 54, 268–280 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pathak, A., Singh, R.K., Mandal, B.N.: Solution of Abel’s integral equation by using Gegenbauer wavelets. Investig. Math. Sci. 4(1), 43–52 (2014)zbMATHGoogle Scholar
  35. 35.
    Abd-Elhameed, W.M., Youssri, Y.H.: New spectral solutions of multi-term fractional order initial value problems with error analysis. Comput. Model. Eng. Sci. 105(5), 375–398 (2015)Google Scholar
  36. 36.
    Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. In: Abstract and Applied Analysis, vol. 2014 Hindawi (2014)Google Scholar
  37. 37.
    Rehman, M., Saeed, U.: Gegenbauer wavelets operational matrix method for fractional differential equations. J. Korean Math. Soc. 52(5), 1069–1096 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Abd-Elhameed, W.M., Youssri, Y.H., Doha, E.H.: New solutions for singular Lane–Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives. Comput. Methods Differ. Equ. 2(3), 171–185 (2014)MathSciNetGoogle Scholar
  39. 39.
    Youssri, Y.H., Abd-Elhameed, W.M., Doha, E.H.: Ultraspherical wavelets method for solving Lane–Emden type equations. Rom. J. Phys. 60(9), 1298–1314 (2015)Google Scholar
  40. 40.
    Youssri, Y.H., Abd-Elhameed, W.M., Doha, E.H.: Accurate spectral solutions of first-and second-order initial value problems by the ultraspherical wavelets-Gauss collocation method. Appl. Appl. Math. Int. J. 10(2), 835–851 (2015)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets collocation method for solving 2nth-order initial and boundary value problems. J. Egypt. Math. Soc. 24(2), 319–327 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Schmuck, M., Pradas, M., Pavliotis, G.A., Kalliadasis, S.: A new mode reduction strategy for the generalized Kuramoto–Sivashinsky equation. IMA J. Appl. Math. 80(2), 273–301 (2013)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)zbMATHGoogle Scholar
  45. 45.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefGoogle Scholar
  46. 46.
    Khater, A.H., Temsah, R.S.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math Appl. 56(6), 1465–1472 (2008)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Lakestani, M., Dehghan, M.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Appl. Math. Model. 36, 605–617 (2012)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Rashidinia, J., Jokar, M.: Polynomial scaling functions for numerical solution of generalized Kuramoto–Sivashinsky equation. Appl. Anal. 96(2), 293–306 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Arts and SciencesPamukkale UniversityDenizliTurkey

Personalised recommendations