Annals of PDE

, 4:11 | Cite as

Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes

  • Peter HintzEmail author


We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.


Black hole stability Einstein–Maxwell equations Global iteration Microlocal analysis Constraint damping 

Mathematics Subject Classification

Primary 83C57 Secondary 83C22 35B40 83C35 



I would like to thank András Vasy, Maciej Zworski, Jim Isenberg, Sergiu Klainerman, and Yakov Shlapentokh-Rothman for valuable discussions and for their interest and support. I am very grateful to Mihalis Dafermos, and to an anonymous referee, for valuable comments on both content and exposition. I would also like to thank the Miller Institute at the University of California, Berkeley, for support.


  1. 1.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182, 787–853 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Andersson, L., Blue, P.: Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. J. Hyperbolic Differ. Equ. 12(04), 689–743 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Lars A., Ma, S. Paganini, C., Whiting, B.F.: Mode stability on the real axis. Preprint arXiv:1607.02759 (2016)
  4. 4.
    Anderson, M.T.: Existence and stability of even-dimensional asymptotically de Sitter spaces. Ann. Henri Poincaré 6(5), 801–820 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Aretakis, S.: Stability and Instability of Extreme Reissner–Nordström Black Hole Spacetimes for Linear Scalar Perturbations I. Commun. Math. Phys. 307(1), 17–63 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Aretakis, S.: Stability and Instability of Extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12(8), 1491–1538 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Baskin, D.: A parametrix for the fundamental solution of the Klein–Gordon equation on asymptotically de Sitter spaces. J. Funct. Anal. 259(7), 1673–1719 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Baskin, D.: Strichartz estimates on asymptotically de Sitter spaces. Ann. Henri Poincaré 14(2), 221–252 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Beig, R., Chruściel, P.T., Schoen, R.: KIDs are non-generic. In: Annales Henri Poincaré, vol. 6, pp. 155–194. Springer (2005)Google Scholar
  10. 10.
    Bony, J.-F., Häfner, D.: Decay and non-decay of the local energy for the wave equation on the de Sitter–Schwarzschild metric. Commun. Math. Phys. 282(3), 697–719 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bartnik, R., Isenberg, J.: The Constraint Equations. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, pp. 1–38. Birkhäuser Basel, Basel (2004)Google Scholar
  12. 12.
    Blue, P.: Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ. 5(4), 807–856 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, vol. 82. Springer, Berlin (2013)zbMATHGoogle Scholar
  14. 14.
    Baskin, D., Vasy, A., Wunsch, J.: Asymptotics of radiation fields in asymptotically Minkowski space. Am. J. Math. 137(5), 1293–1364 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Baskin, D., Vasy, A., Wunsch, J.: Asymptotics of scalar waves on long-range asymptotically Minkowski spaces. Preprint arXiv:1602.04795 (2016)
  16. 16.
    Bieri, L., Zipser, N.: Extensions of the Stability Theorem of the Minkowski Space in General Relativity, vol. 45. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  17. 17.
    Carter, B.: Hamilton–Jacobi and Schrödinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10(4), 280–310 (1968)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Choquet-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Mathematica 88(1), 141–225 (1952)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  20. 20.
    Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14(4), 329–335 (1969)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion. Class. Quantum Gravity 32(1), 015017, 33 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2. Structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339(3), 903–947 (2015)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions. Ann. PDE 3(1), 8 (2017)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford classic texts in the physical sciences. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  25. 25.
    Civin, D.: Quantitative mode stability for the wave equation on the Kerr–Newman spacetime. Preprint arXiv:1405.3620 (2014)
  26. 26.
    Civin, D.: Stability of charged rotating black holes for linear scalar perturbations. PhD thesis, University of Cambridge (2015)Google Scholar
  27. 27.
    Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton mathematical series, vol. 41. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  28. 28.
    Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell–scalar field equations. Ann. of Math. (2) 158(3), 875–928 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    DeTurck, D.M.: Existence of metrics with prescribed Ricci curvature: local theory. Invent. Math. 65(1):179–207 (1981/82)Google Scholar
  30. 30.
    Dias, Ó.J.C., Godazgar, M., Santos, J.E.: Linear mode stability of the Kerr–Newman black hole and its quasinormal modes. Phys. Rev. Lett. 114(15), 151101 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes. Preprint arXiv:1306.5364 (2013)
  32. 32.
    Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. Preprint arXiv:1601.06467 (2016)
  33. 33.
    Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: The \({C}^0\)-stability of the Kerr Cauchy horizon. Preprint arXiv:1710.01722 (2017)
  34. 34.
    Dafermos, M., Rodnianski, I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Inventiones Mathematicae 162(2), 381–457 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter spacetimes. Preprint arXiv:0709.2766 (2007)
  36. 36.
    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Evol. Equ. Clay Math. Proc. 17, 97–205 (2008)MathSciNetGoogle Scholar
  37. 37.
    Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Dafermos, M., Rendall, A.D.: Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Commun. Pure Appl. Math. 69(5), 815–908 (2016)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \(\vert a\vert <M\). Ann. of Math. (2) 183(3), 787–913 (2016)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Dyatlov, S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18(5), 1023–1035 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Dyatlov, S.: Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole. Commun. Math. Phys. 306(1), 119–163 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Dyatlov, S.: Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes. In: Annales Henri Poincaré, vol. 13, pp. 1101–1166. Springer (2012)Google Scholar
  43. 43.
    Dyatlov, S.: Spectral gaps for normally hyperbolic trapping. Ann. Inst. Fourier (Grenoble) 66(1), 55–82 (2016)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys. 7(1), 25–52 (2003)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Friedrich, H.: On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100(4), 525–543 (1985)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107(4), 587–609 (1986)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations. J. Differ. Geom. 34(2), 275–345 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Finster, F., Smoller, J.: Linear stability of the non-extreme Kerr black hole. arXiv:1606.08005 (2016)
  50. 50.
    Gundlach, C., Calabrese, G., Hinder, I., Martín-García, J.M.: Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Gravity 22(17), 3767 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Higuchi, A.: Symmetric tensor spherical harmonics on the N-sphere and their application to the de Sitter group SO(N,1). J. Math. Phys. 28(7), 1553–1566 (1987)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Hintz, P.: Global well-posedness of quasilinear wave equations on asymptotically de Sitter spaces. Annales de l’Institut Fourier 66(4), 1285–1408 (2016)zbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    Hintz, P.: Resonance expansions for tensor-valued waves on asymptotically Kerr–de Sitter spaces. J. Spectr. Theory 7, 519–557 (2017)zbMATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Häfner, D., Nicolas, J.-P.: Scattering of massless Dirac fields by a Kerr black hole. Rev. Math. Phys. 16(01), 29–123 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Hirsch, M.W., Shub, M., Pugh, C.C.: Invariant Manifolds. Springer, Berlin (1977)zbMATHCrossRefGoogle Scholar
  57. 57.
    Hintz, P., Vasy, A.: Non-trapping estimates near normally hyperbolic trapping. Math. Res. Lett. 21(6), 1277–1304 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Hintz, P., Vasy, A.: Asymptotics for the wave equation on differential forms on Kerr–de Sitter space. Preprint arXiv:1502.03179 (2015)
  59. 59.
    Hintz, P., Vasy, A.: Semilinear wave equations on asymptotically de Sitter, Kerr–de Sitter and Minkowski spacetimes. Anal. PDE 8(8), 1807–1890 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Hintz, P., Vasy, A.: Global analysis of quasilinear wave equations on asymptotically Kerr–de Sitter spaces. Int. Math. Res. Not. 2016(17), 5355–5426 (2016)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. Preprint arXiv:1606.04014 (2016)
  62. 62.
    Hintz, P., Vasy, A.: Analysis of linear waves near the cauchy horizon of cosmological black holes. J. Math. Phys. 58(8), 081509 (2017)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Iantchenko, A.: Quasi-normal modes for de Sitter–Reissner–Nordström Black Holes. Preprint arXiv:1407.3654 (2014)
  64. 64.
    Iantchenko, A.: Quasi-normal modes for massless Dirac fields in Kerr–Newman–de Sitter black holes. Preprint arXiv:1511.09233 (2015)
  65. 65.
    Ishibashi, A., Kodama, H.: Stability of higher-dimensional Schwarzschild black holes. Prog. Theor. Phys. 110(5), 901–919 (2003)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Ionescu, A.D., Klainerman, S.: On the global stability of the wave-map equation in Kerr spaces with small angular momentum. Ann. PDE 1(1), 1–78 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Isenberg, J., Maxwell, D., Pollack, D.: A gluing construction for non-vacuum solutions of the Einstein-constraint equations. Adv. Theor. Math. Phys. 9(1), 129–172 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    Isenberg, J.A., Murchadha, N.Ó., York Jr., J.W.: Initial-value problem of general relativity. III. Coupled fields and the scalar-tensor theory. Phys. Rev. D 13(6), 1532 (1976)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Isenberg, J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Gravity 12(9), 2249 (1995)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11(5), 237 (1963)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Kodama, H., Ishibashi, A.: A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions. Progress Theor. Phys. 110(4), 701–722 (2003)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    Kodama, H., Ishibashi, A.: Master equations for perturbations of generalised static black holes with charge in higher dimensions. Prog. Theor. Phys. 111(1), 29–73 (2004)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    Kodama, H., Ishibashi, A., Seto, O.: Brane world cosmology: Gauge-invariant formalism for perturbation. Phys. Rev. D 62(6), 064022 (2000)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984). Lectures in Appl. Math., pp. 293–326. Amer. Math. Soc., Providence, RI (1986)Google Scholar
  76. 76.
    Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)ADSCrossRefGoogle Scholar
  77. 77.
    Kay, B.S., Wald, R.M.: Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere. Class. Quantum Gravity 4(4), 893 (1987)ADSzbMATHCrossRefGoogle Scholar
  78. 78.
    Konoplya, R.A., Zhidenko, A.: Stability of multidimensional black holes: complete numerical analysis. Nucl. Phys. B 777(1), 182–202 (2007)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  79. 79.
    Konoplya, R.A., Zhidenko, A.: Instability of higher-dimensional charged black holes in the de Sitter world. Phys. Rev. Lett. 103(16), 161101 (2009)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    LIGO Scientific Collaboration and Virgo Collaboration.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)Google Scholar
  81. 81.
    Lindblad, H., Rodnianski, I.: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2) 171(3), 1401–1477 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    Luk, J.: The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes. J. Eur. Math. Soc. 15(5), 1629–1700 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Melrose, R.B.: The Atiyah–Patodi-Singer index theorem. Research Notes in Mathematics, vol. 4. A K Peters Ltd, Wellesley (1993)Google Scholar
  85. 85.
    Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293(1), 37–83 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    Moncrief, V.: Odd-parity stability of a Reissner-Nordström black hole. Phys. Rev. D 9(10), 2707 (1974)ADSCrossRefGoogle Scholar
  87. 87.
    Moncrief, V.: Stability of Reissner–Nordström black holes. Phys. Rev. D 10(4), 1057 (1974)ADSCrossRefGoogle Scholar
  88. 88.
    Moncrief, V.: Gauge-invariant perturbations of Reissner–Nordström black holes. Phys. Rev. D 12, 1526–1537 (1975)ADSCrossRefGoogle Scholar
  89. 89.
    Moschidis, G.: The \(r^p\)-weighted energy method of dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2(1), 1–194 (2016)zbMATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    Melrose, R., Barreto, A.S., Vasy, A.: Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces. Commun. Partial Differ. Equ. 39(3), 452–511 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  91. 91.
    Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230(3), 995–1028 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918–919 (1965)ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    Nonnenmacher, S., Zworski, M.: Quantum decay rates in chaotic scattering. Acta Math. 203(2), 149–233 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)ADSzbMATHCrossRefGoogle Scholar
  95. 95.
    Podolskỳ, J., Griffiths, J.B.: Accelerating Kerr–Newman black holes in (anti-)de Sitter space-time. Phys. Rev. D 73(4), 044018 (2006)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Pretorius, F.: Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    Price, R.H.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 5(10), 2419 (1972)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)ADSCrossRefGoogle Scholar
  99. 99.
    Ringström, H.: Future stability of the Einstein-non-linear scalar field system. Inventiones Mathematicae 173(1), 123–208 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    Sbierski, J.: On the existence of a maximal cauchy development for the Einstein equations: a dezornification. In: Annales Henri Poincaré, vol. 17, pp. 301–329. Springer (2016)Google Scholar
  102. 102.
    Barreto, A.S., Zworski, M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–122 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    Schlue, V.: Global results for linear waves on expanding Kerr and Schwarzschild de Sitter cosmologies. Commun. Math. Phys. 334(2), 977–1023 (2015)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    Schlue, V.: Decay of the Weyl curvature in expanding black hole cosmologies. Preprint arXiv:1610.04172 (2016)
  105. 105.
    Speck, J.: The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates. Anal. PDE 7(4), 771–901 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    Saint-Raymond, X.: A simple Nash–Moser implicit function theorem. Enseign. Math. (2) 35(3–4), 217–226 (1989)zbMATHMathSciNetGoogle Scholar
  107. 107.
    Shlapentokh-Rothman, Y.: Exponentially growing finite energy solutions for the Klein–Gordon equation on sub-extremal Kerr spacetimes. Commun. Math. Phys. 329(3), 859–891 (2014)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    Shlapentokh-Rothman, Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Ann. Henri Poincaré 16(1), 289–345 (2015)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  109. 109.
    Sterbenz, J., Tataru, D.: Local energy decay for Maxwell fields part I: spherically symmetric black-hole backgrounds. Int. Math. Res. Not. 2015(11), 3298–3342 (2015)zbMATHMathSciNetGoogle Scholar
  110. 110.
    Stogin, J.: Global stability of the nontrivial solutions to the wave map problem from Kerr \(|a|\ll {M}\) to the hyperbolic plane under axisymmetric perturbations preserving angular momentum. Preprint arXiv:1610.03910 (2016)
  111. 111.
    Schleich, K., Witt, D.M.: A simple proof of Birkhoff’s theorem for cosmological constant. J. Math. Phys. 51(11), 112502 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  112. 112.
    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), 361–401 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    Michael, E., Taylor, M.E.: Partial Differential Equations I–III. Springer, Berlin (1996)Google Scholar
  114. 114.
    Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2, 248–292 (2011)zbMATHMathSciNetGoogle Scholar
  115. 115.
    Vasy, A.: The wave equation on asymptotically de Sitter-like spaces. Adv. Math. 223(1), 49–97 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  116. 116.
    Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381–513 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  117. 117.
    Vishveshwara, C.V.: Stability of the Schwarzschild Metric. Phys. Rev. D 1, 2870–2879 (1970)ADSCrossRefGoogle Scholar
  118. 118.
    Wald, R.M.: Note on the stability of the Schwarzschild metric. J. Math. Phys. 20(6), 1056–1058 (1979)ADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    Wald, R.M.: General Relativity. University of Chicago press, Chicago (2010)zbMATHGoogle Scholar
  120. 120.
    Warnick, C.M.: On quasinormal modes of asymptotically anti-de Sitter black holes. Commun. Math. Phys. 333(2), 959–1035 (2015)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  121. 121.
    Whiting, B.F.: Mode stability of the Kerr black hole. J. Math. Phys. 30(6), 1301–1305 (1989)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  122. 122.
    Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. In: Annales Henri Poincaré, vol. 12, pp. 1349–1385. Springer (2011)Google Scholar
  123. 123.
    Zilhão, M., Cardoso, V., Herdeiro, C., Lehner, L., Sperhake, U.: Testing the nonlinear stability of Kerr–Newman black holes. Phys. Rev. D 90(12), 124088 (2014)ADSCrossRefGoogle Scholar
  124. 124.
    Zerilli, F.J.: Effective potential for Even–Parity Regge–Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)ADSCrossRefGoogle Scholar
  125. 125.
    Zipser, N.: The global nonlinear stability of the trivial solution of the Einstein–Maxwell equations. PhD thesis, Harvard University (2000)Google Scholar
  126. 126.
    Zworski, M.: Mathematical study of scattering resonances. Preprint arXiv:1609.03550 (2016)
  127. 127.
    Zworski, M.: Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited. J. Spectr. Theory 6, 1087–1114 (2016)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations