Advertisement

Simulation of a Bubble-Column Reactor by Three-Dimensional CFD: Multidimension- and Function-Adaptive Network-Based Fuzzy Inference System

  • Erlin Tian
  • Meisam Babanezhad
  • Mashallah Rezakazemi
  • Saeed ShirazianEmail author
Article
  • 34 Downloads

Abstract

Recently, novel approaches have been developed for simulating bubbly flow as well as distributed and constant phase evolution by means of a two-phase reactor. Among these approaches, the Eulerian–Eulerian method and soft computing approaches can be mentioned. Since complex numerical methods (for example, multidimensional Eulerian–Eulerian method) require several runs for fluid conditions optimization, a method which can decrease these runs can be very useful and practical. This method is provided by joining computational fluid dynamic (CFD) to the adaptive neuro-fuzzy inference system (ANFIS). In this technique, valuable information is provided for a careful analysis of fluid conditions. Also, it can facilitate a vast amount of data categorization in synthetic neural network nodes, which eliminates the need for a complex nonstructured CFD mesh. Moreover, a neural geometry can be provided, in which no limitation of mesh numbers in the fluid domain would exist. The key CFD parameters in the scale-up of the reactorstaken into consideration in the current research are gas and liquid circulations. These factors are applied as output factors for prediction tool in various dimensions in the ANFIS method. The results obtained in this study show appropriate conformity concerning ANFIS and CFD results depending on multiple dimensions. In this study, the grouping of CFD and multifunction the ANFIS method delivers the nondiscrete domain in different dimensions and presents an intelligent instrument for the local prediction of multiphase flow. The result shows that three inputs, which represent the dimension of the reactor, and learning stage of the ANFIS method provide a better understanding of flow characteristics in the two-phase reactor, while the two-dimensional ANFIS method even with multistructured functions cannot predict well the multiphase flow in the reactor.

Keywords

Multidimensional machine learning ANFIS method Artificial intelligence method Bubble-column reactor CFD 

Notes

Acknowledgements

E. Tian acknowledges the Grant under NSFC: 61702462.

References

  1. 1.
    Sobrino, C., Acosta-Iborra, A., Izquierdo-Barrientos, M.A., De Vega, M.: Three-dimensional two-fluid modeling of a cylindrical fluidized bed and validation of the maximum entropy method to determine bubble properties. Chem. Eng. J. 262, 628–639 (2015)CrossRefGoogle Scholar
  2. 2.
    Rezakazemi, M., Razavi, S., Mohammadi, T., Nazari, A.G.: Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J. Membr. Sci. 379, 224–232 (2011)CrossRefGoogle Scholar
  3. 3.
    Silva, M.K., d’Ávila, M.A., Mori, M.: Study of the interfacial forces and turbulence models in a bubble column. Comput. Chem. Eng. 44, 34–44 (2012)CrossRefGoogle Scholar
  4. 4.
    Díaz, M.E., Iranzo, A., Cuadra, D., Barbero, R., Montes, F.J., Galán, M.A.: Numerical simulation of the gas–liquid flow in a laboratory scale bubble column: influence of bubble size distribution and non-drag forces. Chem. Eng. J. 139, 363–379 (2008)CrossRefGoogle Scholar
  5. 5.
    Rabha, S., Schubert, M., Hampel, U.: Intrinsic flow behavior in a slurry bubble column: a study on the effect of particle size. Chem. Eng. Sci. 93, 401–411 (2013)CrossRefGoogle Scholar
  6. 6.
    Şal, S., Gül, Ö.F., Özdemir, M.: The effect of sparger geometry on gas holdup and regime transition points in a bubble column equipped with perforated plate spargers. Chem. Eng. Process. 70, 259–266 (2013)CrossRefGoogle Scholar
  7. 7.
    Sokolichin, A., Eigenberger, G.: Gas–liquid flow in bubble columns and loop reactors: part I. Detailed modelling and numerical simulation. Chem. Eng. Sci. 49, 5735–5746 (1994)CrossRefGoogle Scholar
  8. 8.
    Kumar, A., Degaleesan, T., Laddha, G., Hoelscher, H.: Bubble swarm characteristics in bubble columns. Can. J. Chem. Eng. 54, 503–508 (1976)CrossRefGoogle Scholar
  9. 9.
    Rezakazemi, M.: CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination 443, 323–332 (2018)CrossRefGoogle Scholar
  10. 10.
    Hajilary, N., Rezakazemi, M.: CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor. Int. J. Greenhouse Gas Control 77, 88–95 (2018)CrossRefGoogle Scholar
  11. 11.
    Besagni, G., Guédon, G.R., Inzoli, F.: Annular Gap Bubble Column: experimental Investigation and Computational Fluid Dynamics Modeling. J. Fluids Eng. 138, 011302 (2016)CrossRefGoogle Scholar
  12. 12.
    Rzehak, R., Krepper, E.: CFD modeling of bubble-induced turbulence. Int. J. Multiph. Flow 55, 138–155 (2013)CrossRefGoogle Scholar
  13. 13.
    Rezakazemi, M., Shirazian, S.: Gas-liquid phase recirculation in bubble column reactors: development of a hybrid model based on local CFD—Adaptive Neuro-Fuzzy Inference System (ANFIS). J. Non-Equilib. Thermodyn 44. 29–42 (2019)CrossRefGoogle Scholar
  14. 14.
    Tabib, M.V., Roy, S.A., Joshi, J.B.: CFD simulation of bubble column—an analysis of interphase forces and turbulence models. Chem. Eng. J. 139, 589–614 (2008)CrossRefGoogle Scholar
  15. 15.
    Rezakazemi, M., Shirazian, S.: Development of a 3D hybrid intelligent-mechanistic model for simulation of multiphase chemical reactors. Chem. Eng. Technol. 41, 1982–1993 (2018)CrossRefGoogle Scholar
  16. 16.
    Sokolichin, A., Eigenberger, G., Lapin, A.: Simulation of buoyancy driven bubbly flow: established simplifications and open questions. AIChE J. 50, 24–45 (2004)CrossRefGoogle Scholar
  17. 17.
    McClure, D.D., Aboudha, N., Kavanagh, J.M., Fletcher, D.F., Barton, G.W.: Mixing in bubble column reactors: experimental study and CFD modeling. Chem. Eng. J. 264, 291–301 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Hinrichsen, O.: Study on CFD–PBM turbulence closures based on kε and Reynolds stress models for heterogeneous bubble column flows. Comput. Fluids 105, 91–100 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Joshi, J.: Computational flow modelling and design of bubble column reactors. Chem. Eng. Sci. 56, 5893–5933 (2001)CrossRefGoogle Scholar
  20. 20.
    Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019).  https://doi.org/10.1109/TFUZZ.2019.2895560 CrossRefGoogle Scholar
  21. 21.
    Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27, 1587–1601 (2018)CrossRefGoogle Scholar
  22. 22.
    Rostamizadeh, M., Rezakazemi, M., Shahidi, K., Mohammadi, T.: Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int. J. Hydrog. Energy 38, 1128–1135 (2013)CrossRefGoogle Scholar
  23. 23.
    Rezakazemi, M., Mohammadi, T.: Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int. J. Hydrog. Energy 38, 14035–14041 (2013)CrossRefGoogle Scholar
  24. 24.
    Soroush, E., Mesbah, M., Hajilary, N., Rezakazemi, M.: ANFIS modeling for prediction of CO2 solubility in potassium and sodium based amino acid Salt solutions. J. Environ. Chem. Eng. 7, 102925 (2019)CrossRefGoogle Scholar
  25. 25.
    Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)CrossRefGoogle Scholar
  26. 26.
    Dashti, A., Harami, H.R., Rezakazemi, M.: Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int. J. Hydrog. Energy 43, 6614–6624 (2018)CrossRefGoogle Scholar
  27. 27.
    Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRefGoogle Scholar
  28. 28.
    Lei, Y., He, Z., Zi, Y., Hu, Q.: Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech. Syst. Signal Process. 21, 2280–2294 (2007)CrossRefGoogle Scholar
  29. 29.
    K.C. Schurter, P.N. Roschke,: In: The Ninth IEEE International Conference on Fuzzy modeling of a magnetorheological damper using ANFIS, Fuzzy Systems, 2000. FUZZ IEEE 2000, pp. 122–127. IEEE, New York (2000)Google Scholar
  30. 30.
    Rezakazemi, M., Dashti, A., Asghari, M., Shirazian, S.: H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrog. Energy 42, 15211–15225 (2017)CrossRefGoogle Scholar
  31. 31.
    Yilmaz, I., Kaynar, O.: Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst. Appl. 38, 5958–5966 (2011)CrossRefGoogle Scholar
  32. 32.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence, (1997)Google Scholar
  33. 33.
    Yun, Z., Quan, Z., Caixin, S., Shaolan, L., Yuming, L., Yang, S.: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst. 23, 853–858 (2008)CrossRefGoogle Scholar
  34. 34.
    Pourtousi, M., Ganesan, P., Sahu, J., Redzwan, G.: Sensitivity study of Bubble diameter for prediction of flow pattern in homogeneous bubble column regime, IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012004 (2015)Google Scholar
  35. 35.
    Azwadi, C.S.N., Zeinali, M., Safdari, A., Kazemi, A.: Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity. Numer. Heat Transf. Part A: Appl. 63, 906–920 (2013)CrossRefGoogle Scholar
  36. 36.
    Jang, J.-S.: Proceedings of the Fifth IEEE International Conference on Input Selection for ANFIS Learning, Fuzzy Systems, 1996, pp. 1493–1499. IEEE, New York (1996)Google Scholar
  37. 37.
    Pfleger, D., Becker, S.: Modelling and simulation of the dynamic flow behaviour in a bubble column. Chem. Eng. Sci. 56, 1737–1747 (2001)CrossRefGoogle Scholar
  38. 38.
    de Bertodano, M.A.L.: Turbulent bubbly two-phase flow in a triangular duct. Dissertation, (1992)Google Scholar
  39. 39.
    Laborde-Boutet, C., Larachi, F., Dromard, N., Delsart, O., Schweich, D.: CFD simulation of bubble column flows: investigations on turbulence models in RANS approach. Chem. Eng. Sci. 64, 4399–4413 (2009)CrossRefGoogle Scholar
  40. 40.
    Cevik, A., Sezer, E.A., Cabalar, A.F., Gokceoglu, C.: Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl. Soft Comput. 11, 2587–2594 (2011)CrossRefGoogle Scholar
  41. 41.
    Avila, G., Pacheco-Vega, A.: Fuzzy-C-means-based classification of thermodynamic-property data: a critical assessment. Numer. Heat Transf. Part A: Appl. 56, 880–896 (2009)CrossRefGoogle Scholar
  42. 42.
    Mahmoud, M.A., Ben-Nakhi, A.E.: Neural networks analysis of free laminar convection heat transfer in a partitioned enclosure. Commun. Nonlinear Sci. Numer. Simul. 12, 1265–1276 (2007)zbMATHCrossRefGoogle Scholar
  43. 43.
    Salehi, H., Zeinali-Heris, S., Esfandyari, M., Koolivand, M.: Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid. Heat Mass Transf. 49, 575–583 (2013)CrossRefGoogle Scholar
  44. 44.
    Ryoo, J., Dragojlovic, Z., Kaminski, D.A.: Control of convergence in a computational fluid dynamics simulation using ANFIS. IEEE Trans. Fuzzy Syst. 13, 42–47 (2005)CrossRefGoogle Scholar
  45. 45.
    Rezakazemi, M., Azarafza, A., Dashti, A., Shirazian, S.: Development of hybrid models for prediction of gas permeation through FS/POSS/PDMS nanocomposite membranes. Int. J. Hydrog. Energy 43, 17283–17294 (2018)CrossRefGoogle Scholar
  46. 46.
    Dashti, A., Riasat Harami, H., Rezakazemi, M., Shirazian, S.: Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. J. Mol. Liq. 271, 661–669 (2018)CrossRefGoogle Scholar
  47. 47.
    Dashti, A., Asghari, M., Dehghani, M., Rezakazemi, M., Mohammadi, A.H., Bhatia, S.K.: Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. J. Mol. Liq. 265, 53–68 (2018)CrossRefGoogle Scholar
  48. 48.
    Rezakazemi, M., Ghafarinazari, A., Shirazian, S., Khoshsima, A.: Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym. Eng. Sci. 53, 1272–1278 (2012)CrossRefGoogle Scholar
  49. 49.
    Ben-Nakhi, A., Mahmoud, M.A., Mahmoud, A.M.: Inter-model comparison of CFD and neural network analysis of natural convection heat transfer in a partitioned enclosure. Appl. Math. Model. 32, 1834–1847 (2008)zbMATHCrossRefGoogle Scholar
  50. 50.
    Aminossadati, S., Kargar, A., Ghasemi, B.: Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid. Int. J. Therm. Sci. 52, 102–111 (2012)CrossRefGoogle Scholar
  51. 51.
    Pourtousi, M.: CFD modelling and ANFIS development for the hydrodynamics prediction of bubble column reactor ring sparger. Dissertation, University of Malaya (2016)Google Scholar
  52. 52.
    Pourtousi, M., Sahu, J., Ganesan, P., Shamshirband, S., Redzwan, G.: A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics. Powder Technol. 274, 466–481 (2015)CrossRefGoogle Scholar
  53. 53.
    Pourtousi, M., Zeinali, M., Ganesan, P., Sahu, J.: Prediction of multiphase flow pattern inside a 3D bubble column reactor using a combination of CFD and ANFIS. RSC Adv. 5, 85652–85672 (2015)CrossRefGoogle Scholar
  54. 54.
    Babanezhad, M., Rezakazemi, M., Hajilary, N., Shirazian, S.: Liquid-phase chemical reactors: development of 3D hybrid model based on CFD-adaptive network-based fuzzy inference system. Can. J. Chem. Eng. 97, 1676–1684 (2019)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Erlin Tian
    • 1
  • Meisam Babanezhad
    • 2
  • Mashallah Rezakazemi
    • 3
  • Saeed Shirazian
    • 4
    • 5
    Email author
  1. 1.College of Computer and Communication EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.Department of Energy, Faculty of Mechanical EngineeringSouth Tehran Branch, Islamic Azad UniversityTehranIran
  3. 3.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations