International Journal of Fuzzy Systems

, Volume 21, Issue 8, pp 2556–2574 | Cite as

Robust Stabilization and Control of Takagi–Sugeno Fuzzy Systems with Parameter Uncertainties and Disturbances via State Feedback and Output Feedback

  • A. K. Iqbal AhammedEmail author
  • Mohammed Fazle Azeem


A large portion of the frameworks in the business contain extraordinary nonlinearity and vulnerabilities, which are difficult to outline and control using general nonlinear frameworks. To vanquish these kind of inconveniences, distinctive plans have been created in the last two decades, among which a well-known procedure is Takagi–Sugeno fuzzy control. In this paper, this work presents strong adjustment and control of Takagi–Sugeno (T–S) fuzzy frameworks with parameter vulnerabilities and aggravations. At first, Takagi and Sugeno (T–S) fuzzy model is utilized to speak to a nonlinear framework. In light of this T–S fuzzy model, fuzzy controller configuration plans for state input, and yield criticism is likewise created. At that point, vital conditions are inferred for strong adjustment insight of Lyapunov asymptotic security and are communicated in the Linear Matrix Inequalities (LMIs). The proposed framework is implemented in the working stage of MATLAB and the simulation results are given to represent the efficacy of the proposed strategies.


T–S fuzzy system State feedback Output feedback Parameter uncertainties Disturbances Lyapunov stability theory 


  1. 1.
    Chen, C.W.: Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method. Neural Comput. Appl. 20(4), 527–534 (2011)Google Scholar
  2. 2.
    Pereira, C.M., de Almeida, N.N., Velloso, M.L.: Fuzzy modeling to forecast an electric load time series. Procedia Comput. Sci. 55, 395–404 (2015)Google Scholar
  3. 3.
    Abadi, D.N., Khooban, M.H.: Design of optimal Mamdani-type fuzzy controller for nonholonomic wheeled mobile robots. J. King Saud Univ. Eng. Sci. 27(1), 92–100 (2015)Google Scholar
  4. 4.
    Morente-Molinera, J.A., Perez, I.J., Ureña, M.R., Herrera-Viedma, E.: On multi-granular fuzzy linguistic modeling in group decision-making problems: a systematic review and future trends. Knowl. Based Syst. 74, 49–60 (2015)Google Scholar
  5. 5.
    Tao, C.W., Taur, J.S., Chen, Y.C.: Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system. Fuzzy Sets Syst. 161(15), 2081–2103 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Qiu, J., Ding, S.X., Gao, H.: Fuzzy-model-based piecewise static-output-feedback controller design for networked nonlinear systems. IEEE Trans. Fuzzy Syst. 18(5), 919–934 (2010)Google Scholar
  7. 7.
    Jiang, B., Gao, Z., Shi, P., Xu, Y.: Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2011)Google Scholar
  8. 8.
    Nian, Y., Zheng, Y.: Controlling discrete time T–S fuzzy chaotic systems via adaptive adjustment. Phys. Procedia 24, 1915–1921 (2012)Google Scholar
  9. 9.
    Lai, Z., Wu, P., Wu, D.: Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system. ISA Trans. 57, 1–8 (2015)Google Scholar
  10. 10.
    Xie, X., Yue, D., Zhang, H., Peng, C.: Control synthesis of discrete-time T–S fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans. Cybern. 47, 2480–2491 (2016)Google Scholar
  11. 11.
    Dong, J., Wang, Y., Yang, G.H.: Control synthesis of continuous-time T–S fuzzy systems with local nonlinear models. IEEE Trans. Syst. Man Cybern. B Cybern. 39(5), 1245–1258 (2009)Google Scholar
  12. 12.
    Shi, W., Zhang, M., Guo, W., Guo, L.: Stable adaptive fuzzy control for MIMO nonlinear systems. Comput. Math. Appl. 62(7), 2843–2853 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zhang, H., Shi, Y., Liu, M.: H∞ step tracking control for networked discrete-time nonlinear systems with integral and predictive actions. IEEE Trans. Ind. Inf. 9(1), 337–345 (2013)Google Scholar
  14. 14.
    Li, H., Liu, H., Gao, H., Shi, P.: Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 20(2), 342–357 (2012)Google Scholar
  15. 15.
    Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst. 179(1), 34–49 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Yuan, R., Tan, X., Fan, G., Yi, J.: Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturation. Neurocomputing 125, 72–80 (2014)Google Scholar
  17. 17.
    Liu, Y.J., Tong, S.C., Li, T.S.: Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems. Fuzzy Sets Syst. 164(1), 25–44 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Arqub, O.A., Mohammed, A.S., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20(8), 3283–3302 (2016)zbMATHGoogle Scholar
  19. 19.
    Arqub, O.A., et al.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 21(23), 7191–7206 (2017)zbMATHGoogle Scholar
  20. 20.
    Arqub, O.A.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 28(7), 1591–1610 (2017)Google Scholar
  21. 21.
    Chadli, M., Maquin, D., Ragot, J.: Observer-based controller for Takagi–Sugeno models. In: IEEE International Conference on Systems, Man and Cybernetics, SMC’02 5 (2002)Google Scholar
  22. 22.
    Yeh, K., Chen, C.W., Chen, C.Y., Lo, D.C., Chung, P.Y.: A fuzzy Lyapunov LMI criterion to a chaotic system. Phys. Procedia 25, 262–269 (2012)Google Scholar
  23. 23.
    Tong, S., Li, Y.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)Google Scholar
  24. 24.
    Li, T.S., Tong, S.C., Feng, G.: A novel robust adaptive-fuzzy-tracking control for a class of nonlinear multi-input/multi-output systems. IEEE Trans. Fuzzy Syst. 18(1), 150–160 (2010)Google Scholar
  25. 25.
    Zhang, K., Jiang, B., Shi, P.: Fault estimation observer design for discrete-time Takagi–Sugeno fuzzy systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 20(1), 192–200 (2010)Google Scholar
  26. 26.
    Xie, X., Yue, D., Ma, T., Zhu, X.: Further studies on control synthesis of discrete-time T–S fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybern. 44(12), 2784–2791 (2014)Google Scholar
  27. 27.
    Liu, Y., Park, J.H., Guo, B.Z., Shu, Y.: Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control. IEEE Trans. Fuzzy Syst. 99, 1–1 (2017)Google Scholar
  28. 28.
    Wang, W.Y., Chien, Y.H., Leu, Y.G., Lee, T.T.: Adaptive T–S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws. Automatica 46(5), 852–863 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Zhai, D., An, L., Ye, D., Zhang, Q.: Adaptive reliable H∞ static output feedback control against markovian jumping sensor failures. IEEE Trans. Neural Netw. Learn. Syst. (2017)Google Scholar
  30. 30.
    Zhai, D., An, L., Dong, J., Zhang, Q.: Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Trans. Fuzzy Syst. 26(2), 585–597 (2017)Google Scholar
  31. 31.
    Sun, X., Gao, Y., Wu, C.: Output tracking control for a class of continuous-time T–S fuzzy systems. Neurocomputing 152, 199–208 (2015)Google Scholar
  32. 32.
    Liu, H., Lin, X.: Finite-time H∞ control for a class of nonlinear system with time-varying delay. Neurocomputing 149, 1481–1489 (2015)Google Scholar
  33. 33.
    Tsai, S.H.: A global exponential fuzzy observer design for time-delay Takagi–Sugeno uncertain discrete fuzzy bilinear systems with disturbance. IEEE Trans. Fuzzy Syst. 20(6), 1063–1075 (2012)Google Scholar
  34. 34.
    Su, X., Shi, P., Wu, L., Song, Y.D.: A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 21(4), 655–671 (2013)Google Scholar
  35. 35.
    Syed Ali, M., Saravanakumar, R.: Novel delay-dependent robust H∞ control of uncertain systems with distributed time-varying delays. Appl. Math. Comput. 249, 510–520 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, L., Basin, M.V., Li, H., Lu, R.: Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. 26(4), 2336–2347 (2018)Google Scholar
  37. 37.
    Yoshimura, T.: Adaptive fuzzy dynamic surface control for uncertain nonlinear systems in pure-feedback form with input and state constraints using noisy measurements. Science 50, 104–115 (2019). MathSciNetCrossRefGoogle Scholar
  38. 38.
    Li, Z., Wang, J., Shao, H.: Delay-dependent dissipative control for linear time-delay systems. J. Frankl. Inst. 339(6), 529–542 (2002)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhang, H., Fang, H., Zhu, Q.: Modelling and stability analysis of nonlinear networked control systems based on quasi TS fuzzy model. Int. J. Model. Identif. Control 24(1), 42–51 (2015)Google Scholar
  40. 40.
    Kermani, M., Sakly, A.: Robust stability and stabilization studies for uncertain switched systems based on vector norms approach. Int. J. Dyn. Control 4(1), 76–91 (2016)MathSciNetGoogle Scholar
  41. 41.
    Khanesar, M.A., Kaynak, O., Yin, S., Gao, H.: Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans. Fuzzy Syst. 23(1), 205–214 (2015)Google Scholar
  42. 42.
    Hamdy, M., Abd-Elhaleem, S., Fkirin, M.A.: Time-varying delay compensation for a class of nonlinear control systems over network via H∞ adaptive fuzzy controller. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2114–2124 (2017)Google Scholar
  43. 43.
    Ramakrishnan, K., Ray, G.: Robust H∞ controller synthesis for linear uncertain systems with interval time-delay: a less conservative result. Int. J. Control Autom. 14(4), 39–54 (2011)Google Scholar
  44. 44.
    Khaber, F., Zehar, K., Hamzaoui, A.: State feedback controller design via Takagi–Sugeno fuzzy model: LMI approach. Int. J. Comput. Intell. 2(3), 148–153 (2005)Google Scholar
  45. 45.
    Yoneyama, J., et al.: Design of output feedback controllers for Takagi–Sugeno fuzzy systems. Fuzzy Sets Syst. 121(1), 127–148 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringAnjuman Institute of Technology and ManagementBhatkalIndia
  2. 2.Department of Electrical Engineering, College of EngineeringKing Khalid UniversityAhbaKingdom of Saudi Arabia
  3. 3.Department of Electrical Engineering, ZH College of EngineeringAligarh Muslim University (AMU)AligarhIndia

Personalised recommendations