Multi-granulation Rough Sets and Uncertainty Measurement for Multi-source Fuzzy Information System

  • Lei Yang
  • Xiaoyan ZhangEmail author
  • Weihua Xu
  • Binbin Sang


Rough set theory is an effective mathematical tool to deal with uncertain information. With the arrival of the information age, we need to handle not only single-source data sets, but also multi-source data sets. In real life; most of the data we face are fuzzy multi-source data sets. However, the rough set model has not been found for multi-source fuzzy information systems. This paper aims to study how to use the rough set model in multi-source fuzzy environment. Firstly, we define a distance formula between two objects in an information table and further propose a tolerance relation through this formula. Secondly, the supporting characteristic function is proposed by the inclusion relation between tolerance classes and concept set X. And then, from the perspective of multi-granulation, each information source is regarded as a granularity. The optimistic, pessimistic, generalized multi-granulation rough set model and some important properties are discussed in multi-source fuzzy information systems. At the same time, the uncertainty measurement are considered for the different models. Finally, some experiments are carried out to interpret and evaluate the validity and significance of the approach.


Multi-source fuzzy information system Generalized multi-granulation Optimistic multi-granulation Pessimistic multi-granulation Uncertainty measurement 



We would like to express our thanks to the Editor-in-Chief, handling associate editor and anonymous referees for his/her valuable comments and constructive suggestions. This paper is supported by the National Natural Science Foundation of China (Nos. 61472463, 61772002) and the Fundamental Research Funds for the Central Universities (No. XDJK2019B029).


  1. 1.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)zbMATHGoogle Scholar
  2. 2.
    Pawlak, Z.: Rough set theory and its applications to data analysis. J. Cybernet. 29(7), 661–688 (1998)zbMATHGoogle Scholar
  3. 3.
    Peng, X.S., Wen, J.Y., Li, Z.H., Yang, G.Y., Zhou, C.K., Reid, A., Hepburn, D.M., Judd, M.D., Siew, W.H.: Rough set theory applied to pattern recognition of Partial Discharge in noise affected cable data. IEEE Trans. Dielectr. Electr. Insul. 24(1), 147–156 (2017)Google Scholar
  4. 4.
    Zhu, W.: Generalized rough sets based on relations. Inf. Sci. 177(22), 4997–5011 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Macparthalain, N., Shen, Q.: On rough sets, their recent extensions and applications. Knowl. Eng. Rev. 25(4), 365–395 (2010)Google Scholar
  6. 6.
    Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Sets Syst. 100(1–3), 327–342 (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Yeung, D.S., Chen, D.G., Tsang, E.C.C., Lee, J.W.T., Wang, X.Z.: On the generalization of fuzzy rough sets. IEEE Trans. Fuzzy Syst. 13(3), 343–361 (2005)Google Scholar
  8. 8.
    Cornelis, C., Cock, M.D., Radzikowska, A.M.: Vaguely quantified rough sets. In: Rough Sets, Fuzzy Sets, Data Mining Granular Computing, International Conference, RSFDGrC, Toronto, Canada (2007)Google Scholar
  9. 9.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Rough pragmatic description logic. Intell. Syst. Ref. Libr. 43, 157–184 (2013)zbMATHGoogle Scholar
  10. 10.
    Zhu, W.: Topological approaches to covering rough sets. Inf. Sci. 177(6), 1499–1508 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Xu, W.H., Li, W.T.: Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans. Cybernet. 46(2), 366–379 (2016)MathSciNetGoogle Scholar
  12. 12.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intentions in the rough set theory. Inf. Sci. 107(1–4), 149–167 (1998)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wang, G.Y., Feng, H.U., Huang, H., Yu, W.U.: A granular computing model based on tolerance relation. J. China Univ. Posts Telecommun. 12(3), 86–90 (2005)Google Scholar
  14. 14.
    Qian, Y.H., Liang, J.Y., Dang, C.Y.: Incomplete multigranulation rough set. IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 40(2), 420–431 (2010)Google Scholar
  15. 15.
    Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: a multi-granulation rough set. Inf. Sci. Int. J. 180(6), 949–970 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lin, G.P., Liang, J.Y., Li, J.J.: A fuzzy multigranulation decision-theoretic approach to multi-source fuzzy information systems. Knowl. Based Syst. 91, 102–113 (2016)Google Scholar
  17. 17.
    Yu, J.H., Zhang, B., Chen, M.H., Xu, W.H.: Double-quantitative decision-theoretic approach to multigranulation approximate space. Int. J. Approx. Reason. 98, 236–258 (2018)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Xu, W.H., Li, W.T., Zhang, X.T.: Generalized multigranulation rough sets and optimal granularity selection. Granul. Comput. 2(4), 271–288 (2017)Google Scholar
  19. 19.
    Xu, W.H., Guo, Y.T.: Generalized multigranulation double-quantitative decision-theoretic rough set. Knowl. Based Syst. 105, 190–205 (2016)Google Scholar
  20. 20.
    She, Y.H., He, X.L., Shi, H.X., Qian, Y.H.: A multiple-valued logic approach for multigranulation rough set model. Int. J. Approx. Reason. 82(3), 270–284 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Li, Z.W., Liu, X.F., Zhang, G.Q., Xie, N.X., Wang, S.C.: A multi-granulation decision-theoretic rough set method for distributed fc -decision information systems: an application in medical diagnosis. Appl. Soft Comput. 56, 233–244 (2017)Google Scholar
  22. 22.
    Wei, W., Liang, J.: Information fusion in rough set theory: an overview. Inf. Fusion 48, 107–118 (2019)Google Scholar
  23. 23.
    Che, X.Y., Mi, J.S., Chen, D.G.: Information fusion and numerical characterization of a multi-source information system. Knowl. Based Syst. 145, 121–133 (2018)Google Scholar
  24. 24.
    Guo, Y.T., Xu, W.H.: Attribute reduction in multi-source decision systems. Lect Notes. Comput Sci. 9920, 558–568 (2016). Google Scholar
  25. 25.
    Sang, B.B., Guo, Y.T., Shi, D.R., Xu, W.H.: Decision-theoretic rough set model of multi-source decision systems. Int. J. Mach. Learn. Cybernet. 9(1), 1–14 (2017)Google Scholar
  26. 26.
    Xu, W.H., Li, M.M., Wang, X.Z.: Information fusion based on information entropy in fuzzy multi-source incomplete information system. Int. J. Fuzzy Syst. 19(4), 1200–1216 (2017b)MathSciNetGoogle Scholar
  27. 27.
    Xu, W.H., Yu, J.H.: A novel approach to information fusion in multi-source datasets: a granular computing viewpoint. Inf. Sci. 378, 410–423 (2017)Google Scholar
  28. 28.
    Li, M.M., Zhang, X.Y.: Information fusion in a multi-source incomplete information system based on information entropy. Entropy 19(11), 570–586 (2017)Google Scholar
  29. 29.
    Huang, Y.Y., Li, T.R., Luo, C., Fujita, H., Horng, S.J.: Dynamic fusion of multi-source interval-valued data by fuzzy granulation. IEEE Trans. Fuzzy Syst. 26(6): 3403–3417 (2018)  Google Scholar
  30. 30.
    Wu, J., Su, Y.H., Cheng, Y.W., Shao, X.Y., Chao, D., Cheng, L.: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system. Appl. Soft Comput. 68, 13–23 (2018)Google Scholar
  31. 31.
    Elmadany, N.E.D., He, Y.F., Ling, G.: Information fusion for human action recognition via biset/multiset globality locality preserving canonical correlation analysis. IEEE Trans. Image Process. 27(11), 5275–5287 (2018)MathSciNetGoogle Scholar
  32. 32.
    Xiao, G.Q., Li, K.L., Li, K.Q., Xu, Z.: Efficient top-(k, l) range query processing for uncertain data based on multicore architectures. Distrib. Parallel Databases 33(3), 381–413 (2015)Google Scholar
  33. 33.
    Brunetti, A., Weder, B.: Investment and institutional uncertainty: a comparative study of different uncertainty measures. Weltwirtschaftliches Archiv 134(3), 513–533 (1998)Google Scholar
  34. 34.
    Wu, D.R., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 177(23), 5378–5393 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Dai, J.H., Xu, Q.: Approximations and uncertainty measures in incomplete information systems. Inf. Sci. 198(3), 62–80 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Xiao, G.Q., Li, K.L., Xu, Z., Li, K.Q.: Efficient monochromatic and bichromatic probabilistic reverse top-k query processing for uncertain big data. J. Comput. Syst. Sci. 89, 92–113 (2017)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Teng, S.H., Fan, L., Ma, Y.X., Mi, H., Nian, Y.J.: Uncertainty measures of rough sets based on discernibility capability in information systems. Soft Comput. 21(4), 1081–1096 (2017)zbMATHGoogle Scholar
  38. 38.
    Chen, Y.M., Yu, X., Ying, M., Xu, F.F.: Measures of uncertainty for neighborhood rough sets. Knowl. Based Syst. 120, 226–235 (2017)Google Scholar
  39. 39.
    Hu, Q., Lei, Z., Chen, D., Pedrycz, W., Yu, D.: Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications. Int. J. Approx. Reason. 51(4), 453–471 (2010)zbMATHGoogle Scholar
  40. 40.
    Wei, C.P., Rodriguez, R.M., Martinez, L.: Uncertainty measures of extended hesitant fuzzy linguistic term sets. IEEE Trans. Fuzzy Syst. 26(3), 1763–1768 (2018)Google Scholar
  41. 41.
    Huang, B., Guo, C.X., Li, H.X., Feng, G.F., Zhou, X.Z.: Hierarchical structures and uncertainty measures for intuitionistic fuzzy approximation space. Inf. Sci. 336, 92–114 (2016)zbMATHGoogle Scholar
  42. 42.
    Xiao, G .Q., Wu, F., Zhou, X., Li, K .Q.: Probabilistic top-k range query processing for uncertain databases. J. Intell. Fuzzy Syst. 31(2), 1109–1120 (2016)zbMATHGoogle Scholar
  43. 43.
    Xiao, G.Q., Li, K.L., Zhou, X., Li, K.Q.: Queueing analysis of continuous queries for uncertain data streams over sliding windows. Int. J. Pattern Recognit. Artif. Intell. 30(9), 1–16 (2016)Google Scholar
  44. 44.
    Xiao, G.Q., Li, K.L., Li, K.Q.: Reporting l most influential objects in uncertain databases based on probabilistic reverse top-k queries. Inf. Sci. 405, 207–226 (2017)Google Scholar
  45. 45.
    Lin, G.P., Liang, J.Y., Qian, Y.H.: An information fusion approach by combining multigranulation rough sets and evidence theory. Inf. Sci. 314, 184–199 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Lei Yang
    • 1
  • Xiaoyan Zhang
    • 2
    Email author
  • Weihua Xu
    • 2
  • Binbin Sang
    • 3
  1. 1.School of ScienceChongqing University of TechnologyChongqingPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsSouthwest UniversityChongqingPeople’s Republic of China
  3. 3.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations