Advertisement

Adaptive Fuzzy-Neural Fractional-Order Current Control of Active Power Filter with Finite-Time Sliding Controller

  • Yunmei Fang
  • Juntao FeiEmail author
  • Di Cao
Article
  • 4 Downloads

Abstract

In this research, an adaptive fuzzy-neural fractional-order current controller using a terminal sliding controller is developed to track ideal current of an active power filter (APF) with limited time control performance. First, an adaptive fractional-order finite-time controller using terminal sliding strategy is put forward to realize high precision and finite-time control properties with guaranteed stable sliding surface. Then a fuzzy-neural estimator is proposed to estimate the unknown APF system nonlinearities. Numerical analysis is provided to prove the validity of the proposed adaptive fuzzy-neural fractional-order terminal sliding controller to track the ideal current and suppress the harmonic distortion.

Keywords

Fuzzy-neural network Fractional order Terminal sliding control 

Notes

Acknowledgements

The authors appreciate the anonymous reviewers for their comments to improve the paper quality. This work is partially supported by the National Science Foundation of China (Grant No. 61873085) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2017 1198).

References

  1. 1.
    Yue, Y., Chen, Y.: Robust predictive dual-loop control method based on Lyapunov function stability and energy equilibrium though double-core processors for active power filter. Int. J. Electr. Power Energy Syst. 89, 69–81 (2017)CrossRefGoogle Scholar
  2. 2.
    Swain, S., Ray, P.: Improvement of power quality using a robust hybrid series active power filter. IEEE Trans. Power Electron. 32(5), 3490–3498 (2017)CrossRefGoogle Scholar
  3. 3.
    Hou, S., Fei, J.: Finite-time adaptive fuzzy-neural-network control of active power filter. IEEE Trans Power Electron (2019).  https://doi.org/10.1109/tpel.2019 Google Scholar
  4. 4.
    Fei, J., Wang, T.: Adaptive fuzzy-neural-network based on RBFNN control for active power filter. Int. J. Mach. Learn. Cybern. 6, 1–12 (2018).  https://doi.org/10.1007/s13042-018-0792-y Google Scholar
  5. 5.
    Chu, Y., Fei, J.: Dynamic global PID sliding mode control using RBF neural compensator for three-phase active power filter. Trans. Inst. Meas. Control 40(12), 3549–3559 (2018)CrossRefGoogle Scholar
  6. 6.
    Carpinelli, G., Proto, D.: Optimal planning of active power filters in a distribution system using trade-off/risk method. IEEE Trans. Power Deliv. 32(2), 841–851 (2017)CrossRefGoogle Scholar
  7. 7.
    Tareen, W., Mekhilef, S.: Active power filter for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renew. Sustain. Energy Rev. 70, 635–655 (2017)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Gong, M., Tong, S.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26(5), 2607–2617 (2018)CrossRefGoogle Scholar
  9. 9.
    Wu, H., Wang, Z.: Observer-based hinfty sampled-data fuzzy control for a class of nonlinear parabolic PDE systems. IEEE Trans. Fuzzy Syst. 26(2), 454–473 (2018)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Tong, S.: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw Learn. Syst. 29(7), 3059–3068 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)MathSciNetGoogle Scholar
  12. 12.
    Wang, H., Karimi, H., Liu, P.: Adaptive neural control of nonlinear systems with unknown control directions and input dead-zone. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 1897–1907 (2018)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Liu, P., Niu, B.: Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans. Cybern. 48(8), 2462–2471 (2018)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Liu, P., Li, S.: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics. IEEE Neural Netw. Learn. Syst. 29(8), 3658–3668 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, B., Yang, D., Shi, Z., Pan, Y., Chen, B., Sun, F.: Online recorded data based composite neural control of strict-feedback systems with application to hypersonic flight dynamics. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3839–3849 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chen, C.: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Indus. Electron. 55(9), 3402–3414 (2008)CrossRefGoogle Scholar
  17. 17.
    Wai, R.: Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 274–287 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Duh, F., Lin, C.: Tracking a maneuvering target using neural fuzzy network. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 16–33 (2004)CrossRefGoogle Scholar
  19. 19.
    Wai, R., Yang, Z.: Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamic. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(5), 1326–1346 (2008)CrossRefGoogle Scholar
  20. 20.
    Tang, Y., Ling, N.: Identification of fractional-order systems with time delays using block pulse functions. Mech. Syst. Signal Process. 91, 382–394 (2018)CrossRefGoogle Scholar
  21. 21.
    Kumar, A., Kumar, V.: A novel interval type-2 fractional order fuzzy PID controller: design, performance evaluation, and its optimal time domain tuning. ISA Trans. 68, 251–275 (2018)CrossRefGoogle Scholar
  22. 22.
    Fei, J., Lu, C.: Adaptive fractional order sliding mode controller with neural estimator. J. Frankl. Inst. 355(5), 2369–2391 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cao, D., Fei, J.: Adaptive fractional fuzzy sliding mode control for three-phase active power filter. IEEE Access 4, 6645–6651 (2016)CrossRefGoogle Scholar
  24. 24.
    Sui, S., Chen, C., Tong, S.: Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 27(1), 172–184 (2019)CrossRefGoogle Scholar
  25. 25.
    Sui, S., Chen, C., Tong, S.: Neural network filtering control design for nontriangular structure switched nonlinear systems in finite time. IEEE Trans. Neural Netw. Learn. Syst. 10, 15–20 (2018).  https://doi.org/10.1109/tnnls.2018 Google Scholar
  26. 26.
    Sui, S., Tong, S., Chen, C.: Finite-time filter decentralized control for nonstrict- feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 26(6), 3289–3300 (2018)CrossRefGoogle Scholar
  27. 27.
    Liu, L., Liu, Y., Tong, S.: Neural networks-based adaptive finite-time fault- tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Trans. Cybern. (2018).  https://doi.org/10.1109/tcyb.2018.2828308 Google Scholar
  28. 28.
    Fei, J., Liang, X.: Adaptive backstepping fuzzy-neural-network fractional order control of microgyroscope using nonsingular terminal sliding mode controller. Complexity (2018).  https://doi.org/10.1155/2018/5246074 zbMATHGoogle Scholar
  29. 29.
    Fei, J., Cao, D.: Adaptive fractional terminal sliding mode controller for active power filter using fuzzy-neural-network. In: Proceedings of 2018 10th International Conference on Knowledge and Systems Engineering (KSE) 2018Google Scholar
  30. 30.
    Dadras, S., Momeni, H.: Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun. Nonlinear Sci. Numer. Simul. 17(1), 367–377 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.College of IoT EngineeringHohai UniversityChangzhouChina

Personalised recommendations