Decentralized Control Design for Switching Fuzzy Large-Scale T–S Systems by Switched Lyapunov Function with \(H_\infty \) Performance

  • Laila El Younsi
  • Abdellah BenzaouiaEmail author
  • Ahmed El Hajjaji


This paper investigates the \(H_{\infty }\) control design for switched fuzzy discrete-time interconnected systems. This type of systems contains nonlinear interconnected subsystems. Every subsystem has different switching modes described by a T–S fuzzy model. Less conservative sufficient conditions are proposed and formulated in terms of LMIs obtained using Switched Lyapunov functions and parallel distributed compensation (PDC) controllers. The design is allowed by \(H_{\infty }\) technique and a relaxed method is presented. Two numerical examples are developed to illustrate the effectiveness of the obtained results.


Switched fuzzy system Large-scale systems Interconnected systems \(H_{\infty }\) performance 


  1. 1.
    Benzaouia, A.: Saturated Switching Systems, LNC 426, ISBN-13: 978–1447128991. Springer, Berlin (2012)Google Scholar
  2. 2.
    Benzaouia, A., El Hajjaji, A., Fernando, T.: Stabilization of switching Takagi–Sugeno systems by switched Lyapunov function. Int. J. Adapt. Control Signal Process. 25(12), 1039–1049 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benzaoui, A., Hajjaji, E.L.: Conditions of stabilization of positive continuous Takagi–Sugeno fuzzy systems with delay. Int. J. Fuzzy Syst. 20(3), 750–758 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chiang, C.C : Decentralized robust fuzzy-model-based control of uncertain large-scale systems with input delay. In: International Conference on Fuzzy Systems (2006)Google Scholar
  5. 5.
    Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47, 1883–1887 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Flavio, A., Valentino, M.C., Oliveira, V.A.: A fuzzy Lyapunov function approach for stabilization and \(H_{\infty }\) control of switched T–S fuzzy systems. Appl. Math. Model. 38(19—-20), 4817–4834 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Jabiri, D., Manamanni, N., Guelton, K., Abdelkrim, M.-N.: Decentralized stabilization of discrete-time large-scale switched systems. In: 18th Mediterranean Conference on Control and Automation (2010)Google Scholar
  8. 8.
    Jiuxiang, D., Guang-Hong, Y.: Observer-based output feedback control for discrete-time T–S fuzzy systems with partly immeasurable premise variables. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 2168–2216 (2017)Google Scholar
  9. 9.
    Jiuxiang, D., Guang-Hong, Y.: Reliable state feedback control of T–S fuzzy systems with sensor faults. IEEE Trans. Fuzzy Syst. 23(2), 421–433 (2015)CrossRefGoogle Scholar
  10. 10.
    Kim, H.S., Park, J.B., Hoon Joo, Y.: Decentralized samples-data tracking control of large-scale fuzzy systems: an exact discretization approach. IEEE Access (2017).
  11. 11.
    Koo, G.B., Park, J.B., Joo, Y.H.: Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans. Fuzzy Syst. 22(2), 406–419 (2014)CrossRefGoogle Scholar
  12. 12.
    Liu, Y. Dimirovski, G. M., Zhao, J.: Robust output feedback control for a class of uncertain switching fuzzy systems. In: 17th World Congress of International Federation of Automatic Control (2008)Google Scholar
  13. 13.
    Mahmoud, M.S., AL-Sunni, F.: Interconnected switched discrete-time systems:robust stability and stabilization. IMA J. Math. Control Inf. 28(1), 41–73 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sun, C.C: Decentralized control for discrete-time switched large-scale linear systems. In: 2nd International Conference on Intelligent Control and Information Processing (2011)Google Scholar
  15. 15.
    Sun, C.C: Stabilization for a class of discrete-time switched large-scale systems with parameter uncertainties. Int. J. Autom. Comput. Springer (2016).
  16. 16.
    Tseng, C., Chen, B.: \(H_{\infty }\) decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 9(6), 795–809 (2001)CrossRefGoogle Scholar
  17. 17.
    Tong, S., Lili, Z., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2015)CrossRefGoogle Scholar
  18. 18.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)CrossRefGoogle Scholar
  19. 19.
    Wang, T., Tong, S.: Decentralized control design for switched fuzzy large-scale systems with \(H_{\infty }\) performance. J. Neurocomput. 165(C), 330–337 (2015)Google Scholar
  20. 20.
    Wang, W.-J., Lin, W.-W.: Decentralized PDC for large-scale T–S fuzzy systems. IEEE Trans. Fuzzy Syst. 13(6), 779–786 (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, T., Tong, S.: Observer-based output-feedback asynchronous control for switched fuzzy systems. IEEE Trans. Cybern. 47(9), 2579–2591 (2017)CrossRefGoogle Scholar
  22. 22.
    Xinrui, L., Huaguang, Z., Derong, L.: Decentralized \(H_{\infty }\) control for the fuzzy large-scale systems. In: IEEE international Conference on Fuzzy Systems (2006)Google Scholar
  23. 23.
    Yang, J., Yang, W., Tong, S.: Decentralized control of switched nonlinear large-scale systems with actuator dead zone. J. Neurocomput. 200(C), 80–87 (2016)Google Scholar
  24. 24.
    Zhong; H., Zhang, H. : Decentralized fuzzy \(H_2\) filtering for discrete time fuzzy large-scale systems. In: 29th Chinese Control Conference (2010)Google Scholar
  25. 25.
    Zhong, Z., Zhu, Y., Yang, T.: Robust decentralized static output-feedback control design for large-scale nonlinear systems using Takagi–Sugeno fuzzy models. IEEE Access Spec. Sect. Anal. Synth. Large-scale Syst. 4, 8250–8263 (2016)Google Scholar
  26. 26.
    Zhang, H., Feng, G.: Stability analysis and \(H_{\infty }\) controller design of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(5), 1390–1401 (2008)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Laila El Younsi
    • 1
  • Abdellah Benzaouia
    • 1
    Email author
  • Ahmed El Hajjaji
    • 2
  1. 1.Faculty of Science SemlaliaLAEPT, University Cadi AyyadMarrakechMorocco
  2. 2.University of Picardie Jules Vernes (UPJV)Amiens Cedex 1France

Personalised recommendations