Advertisement

A Multiple-Criteria Decision-Making Method Based on D Numbers and Belief Entropy

  • Fuyuan XiaoEmail author
Article
  • 18 Downloads

Abstract

Multiple-criteria decision-making (MCDM) is an important branch of operations research which judges multiple criteria under decision-making environments. In the process of handling MCDM problems, because of the subjective judgment of human beings, it unavoidably involves a variety of uncertainties, like imprecision, fuzziness and incompleteness. The D numbers, as a reliable and effective expression of uncertain information, has a good performance to handle these types of uncertainties. However, there still are some spaces to be further researched. Therefore, a novel belief entropy-based method with regard to D numbers is proposed for MCDM problems. Finally, an application in the MCDM problem is illustrated to reveal the efficiency of the proposed method.

Keywords

Multiple-criteria decision-making D numbers Belief entropy Distance function 

Notes

Acknowledgements

The author greatly appreciates the reviews’ suggestions and the editor’s encouragement. This research is supported by the Chongqing Overseas Scholars Innovation Program (No. cx2018077).

Compliance with Ethical Standards

Conflict of interest

Author F. Xiao declares that she has no conflict of interest.

References

  1. 1.
    Mardani, A., Jusoh, A., Zavadskas, E.K.: Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Expert Syst. Appl. 42(8), 4126–4148 (2015)CrossRefGoogle Scholar
  2. 2.
    He, Z., Jiang, W.: An evidential Markov decision making model. Inf. Sci. 467, 357–372 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pedrycz, W., Al-Hmouz, R., Morfeq, A., Balamash, A.S.: Building granular fuzzy decision support systems. Knowl. Based Syst. 58, 3–10 (2014)CrossRefGoogle Scholar
  4. 4.
    Seiti, H., Hafezalkotob, A., Fattahi, R.: Extending a pessimistic-optimistic fuzzy information axiom based approach considering acceptable risk: application in the selection of maintenance strategy. Appl. Soft Comput. 67, 895–909 (2018)CrossRefGoogle Scholar
  5. 5.
    Dadelo, S., Turskis, Z., Zavadskas, E.K., Dadeliene, R.: Multi-criteria assessment and ranking system of sport team formation based on objective-measured values of criteria set. Expert Syst. Appl. 41(14), 6106–6113 (2014)CrossRefGoogle Scholar
  6. 6.
    Jiang, W., Wei, B., Liu, X., Li, X., Zheng, H.: Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making. Int. J. Syst. Sci. 49, 582–594 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kang, B., Deng, Y., Hewage, K., Sadiq, R.: Generating Z-number based on OWA weights using maximum entropy. Int. J. Intell. Syst. 33(8), 1745–1755 (2018)CrossRefGoogle Scholar
  8. 8.
    Zavadskas, E.K., Mardani, A., Turskis, Z., Jusoh, A., Nor, K.M.: Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 15(03), 645–682 (2016)CrossRefGoogle Scholar
  9. 9.
    Lolli, F., Ishizaka, A., Gamberini, R., Rimini, B., Messori, M.: FlowSort-GDSS-A novel group multi-criteria decision support system for sorting problems with application to FMEA. Expert Syst. Appl. 42(17), 6342–6349 (2015)CrossRefGoogle Scholar
  10. 10.
    Evans, J.P., Steuer, R.E.: A revised simplex method for linear multiple objective programs. Math. Program. 5(1), 54–72 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yu, P., Zeleny, M.: The set of all nondominated solutions in linear cases and a multicriteria simplex method. J. Math. Anal. Appl. 49(2), 430–468 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  13. 13.
    Liu, H.-C., You, J.-X., You, X.-Y., Shan, M.-M.: A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. 28, 579–588 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Deng, Y.: Combining conflicting evidence using the DEMATEL method. Soft Comput. (2018).  https://doi.org/10.1007/s00500-018-3455-8 Google Scholar
  15. 15.
    Han, Y., Deng, Y.: An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Comput. 22(15), 5073–5090 (2018)CrossRefGoogle Scholar
  16. 16.
    Zhou, X., Hu, Y., Deng, Y., Chan, F.T.S., Ishizaka, A.: A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP. Ann. Oper. Res. 271(2), 1045–1066 (2018).  https://doi.org/10.1007/s10479-018-2769-3 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Su, S.-F., Chen, M.-C., Hsueh, Y.-C.: A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2311–2317 (2017)CrossRefGoogle Scholar
  18. 18.
    Wang, N., Sun, Z., Su, S.-F., Wang, Y.: Fuzzy uncertainty observer-based path-following control of underactuated marine vehicles with unmodeled dynamics and disturbances. Int. J. Fuzzy Syst. 20(8), 2593–2604 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kang, B., Deng, Y., Hewage, K., Sadiq, R.: A method of measuring uncertainty for Z-number. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2868496 Google Scholar
  20. 20.
    Fei, L., Deng, Y., Hu, Y.: DS-VIKOR: a new multi-criteria decision-making method for supplier selection. Int. J. Fuzzy Syst. (2018).  https://doi.org/10.1007/s40815-018-0543-y Google Scholar
  21. 21.
    Deng, X., Jiang, W.: Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures. Ann. Nucl. Energy 117, 183–193 (2018)CrossRefGoogle Scholar
  22. 22.
    Su, X., Mahadevan, S., Xu, P., Deng, Y.: Dependence assessment in human reliability analysis using evidence theory and AHP. Risk Anal. 35(7), 1296–1316 (2015)CrossRefGoogle Scholar
  23. 23.
    Zavadskas, E.K., Turskis, Z., Bagočius, V.: Multi-criteria selection of a deep-water port in the Eastern Baltic Sea. Appl. Soft Comput. 26, 180–192 (2015)CrossRefGoogle Scholar
  24. 24.
    Fu, C., Xu, D.-L.: Determining attribute weights to improve solution reliability and its application to selecting leading industries. Ann. Oper. Res. 245, 401–426 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Han, Y., Deng, Y.: A hybrid intelligent model for assessment of critical success factors in high risk emergency system. J. Ambient Intell. Humaniz. Comput. 9(6), 1933–1953 (2018)CrossRefGoogle Scholar
  26. 26.
    Su, S.-F., Hsueh, Y.-C., Tseng, C.-P., Chen, S.-S., Lin, Y.-S.: Direct adaptive fuzzy sliding mode control for under-actuated uncertain systems. Int. J. Fuzzy Log. Intell. Syst. 15(4), 240–250 (2015)CrossRefGoogle Scholar
  27. 27.
    Wang, N., Su, S.-F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)CrossRefGoogle Scholar
  28. 28.
    Deng, Y.: D numbers: Theory and applications. J. Inf. Comput. Sci. 9(9), 2421–2421 (2012)Google Scholar
  29. 29.
    Deng, X., Deng, Y.: D-AHP method with different credibility of information. Soft Comput. (2018).  https://doi.org/10.1007/s00500-017-2993-9 Google Scholar
  30. 30.
    Mo, H., Deng, Y.: A new MADA methodology based on D numbers. Int. J. Fuzzy Syst. 20(8), 2458–2469 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, N., Liu, F., Wei, D.: A modified combination rule for D numbers theory. Math. Probl. Eng. 2016, 1–10 (2016)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Rikhtegar, N., Mansouri, N., Ahadi Oroumieh, A., Yazdani-Chamzini, A., Kazimieras Zavadskas, E., Kildienė, S.: Environmental impact assessment based on group decision-making methods in mining projects. Econ. Res./Ekon. Istraž. 27(1), 378–392 (2014)Google Scholar
  33. 33.
    Liu, H.-C., You, J.-X., Fan, X.-J., Lin, Q.-L.: Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst. Appl. 41(10), 4670–4679 (2014)CrossRefGoogle Scholar
  34. 34.
    Xiao, F.: An intelligent complex event processing with D numbers under fuzzy environment. Math. Probl. Eng. 2016, 1–10 (2016)Google Scholar
  35. 35.
    Sun, L., Liu, Y., Zhang, B., Shang, Y., Yuan, H., Ma, Z.: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers. Energies 9(9), 697 (2016)CrossRefGoogle Scholar
  36. 36.
    Khechadoorian, V., Osanloo, M.: Mined land use selection using a modified version of TOPSIS method, that can handle uncertainty, by accepting inputs as D numbers. In: Proceedings of the Beijing International Symposium Land Reclamation and Ecological Restoration, pp. 625–633 (2014)Google Scholar
  37. 37.
    Zong, F., Wang, L.: Evaluation of university scientific research ability based on the output of sci-tech papers: a D-AHP approach. PLoS One 12(2), e0171437 (2017)CrossRefGoogle Scholar
  38. 38.
    Xiao, F.: A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Eng. Appl. Artif. Intell. 71(2018), 216–225 (2018)CrossRefGoogle Scholar
  39. 39.
    Li, M., Hu, Y., Zhang, Q., Deng, Y.: A novel distance function of D numbers and its application in product engineering. Eng. Appl. Artif. Intell. 47, 61–67 (2016)CrossRefGoogle Scholar
  40. 40.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shafer, G.: A mathematical theory of evidence. Technometrics 20(1), 242 (1978)Google Scholar
  42. 42.
    Yin, L., Deng, X., Deng, Y.: The negation of a basic probability assignment. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2871756 Google Scholar
  43. 43.
    Xiao, F.: An improved method for combining conflicting evidences based on the similarity measure and belief function entropy. Int. J. Fuzzy Syst. 20(4), 1256–1266 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zhang, H., Deng, Y.: Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory. Adv. Mech. Eng. (2018).  https://doi.org/10.1177/1687814018809184 Google Scholar
  45. 45.
    Pan, L., Deng, Y.: A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function. Entropy 20(11), 842 (2018)CrossRefGoogle Scholar
  46. 46.
    Song, Y., Wang, X., Zhu, J., Lei, L.: Sensor dynamic reliability evaluation based on evidence theory and intuitionistic fuzzy sets. Appl. Intell. 48, 3950–3962 (2018)CrossRefGoogle Scholar
  47. 47.
    Liu, Z.-G., Pan, Q., Dezert, J., Martin, A.: Adaptive imputation of missing values for incomplete pattern classification. Pattern Recognit. 52, 85–95 (2016)CrossRefGoogle Scholar
  48. 48.
    Li, M., Zhang, Q., Deng, Y.: Evidential identification of influential nodes in network of networks. Chaos Solitons Fractals 117, 283–296 (2018)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Deng, Y.: Deng entropy. Chaos Solitons Fractals 91, 549–553 (2016)CrossRefzbMATHGoogle Scholar
  50. 50.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Yin, L., Deng, Y.: Toward uncertainty of weighted networks: an entropy-based model. Phys. A Stat. Mech. Appl. 508, 176–186 (2018)CrossRefGoogle Scholar
  52. 52.
    Xiao, F.: A hybrid fuzzy soft sets decision making method in medical diagnosis. IEEE Access 6, 25300–25312 (2018)CrossRefGoogle Scholar
  53. 53.
    Li, Y., Deng, Y.: Generalized ordered propositions fusion based on belief entropy. Int. J. Comput. Commun. Control 13(5), 792–807 (2018)CrossRefGoogle Scholar
  54. 54.
    Xiao, F.: Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 46(2019), 23–32 (2019)CrossRefGoogle Scholar
  55. 55.
    Yu, L., Lai, K.K.: A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decis. Support Syst. 51(2), 307–315 (2011)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.School of Computer and Information ScienceSouthwest UniversityChongqingChina

Personalised recommendations