Advertisement

Parity Space Method for Mode Detection of a Nonlinear Switching System Using Takagi–Sugeno Modeling

  • Y. GarboujEmail author
  • T. Zouari
  • M. Ksouri
Article
  • 8 Downloads

Abstract

This paper deals with the problem of the recognition of the active mode for nonlinear switching system and the determination of the switching instants. An extension of the parity space method is used for nonlinear modes that are represented by Takagi–Sugeno (TS) models which allows to model a widespread class of real systems. A set of residuals are generated to indicate the path online. The determination of the switching instants is from these residuals that are composed of different modes of the system which reduces the detection time. Tests of discernibility are calculated online to verify the uniqueness of the active path. The effectiveness of the proposed recognition approach has been demonstrated through simulations of examples. The considered cases are a combination of the system in a deterministic context with (or without) measurement noise or with (or without) uncertain parameters.

Keywords

Mode recognition Hybrid dynamical systems Nonlinear systems Discernibility Parity space Takagi Sugeno 

References

  1. 1.
    Schaft, A., Schumacher, J.: An Introduction to Hybrid Dynamical Systems. Volume 251 of Lecture Notes in Control and Information Sciences (2000)Google Scholar
  2. 2.
    Yang, H., Jiang, B., Cocquempot, V.: Fault tolerant control and hybrid systems, Fault Tolerant Control Design for Hybrid Systems pp. 1–9 (2010)Google Scholar
  3. 3.
    Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403 (2017)Google Scholar
  4. 4.
    Engell, S., Kowalewski, S., Schulz, C., Stursberg, O.: Continuous-discrete interactions in chemical processing plants. Proc. IEEE 88(7), 1050 (2000)CrossRefGoogle Scholar
  5. 5.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of the traffic alert and collision avoidance system (tcas). Proc. IEEE 88(7), 926 (2000)CrossRefGoogle Scholar
  6. 6.
    Antsaklis, P.J.: A brief introduction to the theory and applications of hybrid systems. In: Proc IEEE, Special Issue on Hybrid Systems: Theory and Applications. Citeseer (2000)Google Scholar
  7. 7.
    Petroff, N.B.: Biomimetic sensing for robotic manipulation. Biomimetic sensing for robotic manipulation. University of Notre Dame (2007)Google Scholar
  8. 8.
    Zhang, W., Hu, J., Lu, Y.H.: Optimal power modes scheduling using hybrid systems. In: Proceedings of the American Control Conference, New York City, NY (2007)Google Scholar
  9. 9.
    Ma, Y., Kawakami, H., Tse, C.K.: Bifurcation analysis of switched dynamical systems with periodically moving borders. IEEE Trans. Circuits Syst. I Regul. Pap. 51(6), 1184 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Torikai, H., Saito, T.: Synchronization of chaos and its itinerancy from a network by occasional linear connection. IEEE Trans. Circuits Syst. I Fundam Theory Appl. 45(4), 464 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mitsubori, K., Saito, T.: Dependent switched capacitor chaos generator and its synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(12), 1122 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zouari, T., Pekpe, K.M., Cocquempot, V., Ksouri, M.: Robust mode recognition in hybrid dynamical systems with nonlinear modes. In: Paper Presented at Control and Decision Conference (CCDC), 2011 Chinese (IEEE, 2011), pp. 1308–1313Google Scholar
  13. 13.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116 (1985)CrossRefGoogle Scholar
  14. 14.
    Hong, Y., Zhang, H., Zheng, Q.: Asynchronous H\(\infty\) filtering for switched TS fuzzy systems and its application to the continuous stirred tank reactor. Int. J. Fuzzy Syst. 1–13 (2018)Google Scholar
  15. 15.
    Astorga-Zaragoza, C.M., Osorio-Gordillo, G.L., Reyes-Martinez, J., Madrigal-Espinosa, G., Chadli, M.: Takagi-Sugeno observers as an alternative to nonlinear observers for analytical redundancy. Application to a steam generator of a thermal power plant. Int. J. Fuzzy Syst. (2018)Google Scholar
  16. 16.
    Xie, X., Yue, D., Zhang, H., Xue, Y.: Control synthesis of discrete-time TS fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cybern. 46(3), 630 (2016)CrossRefGoogle Scholar
  17. 17.
    Dong, J., Yang, G.H.: Reliable state feedback control of TS fuzzy systems with sensor faults. IEEE Trans. Fuzzy Syst. 23(2), 421–433 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dong, J., Wu, Y., Yang, G.H.: A new sensor fault isolation method for TS fuzzy systems. IEEE Trans. Cybern. 47(9), 2437–2447 (2017)CrossRefGoogle Scholar
  19. 19.
    Yang, G.H., Wang, H.: Fault detection and isolation for a class of uncertain state feedback fuzzy control systems. IEEE Trans. Fuzzy Syst. 23(1), 139 (2015)CrossRefGoogle Scholar
  20. 20.
    Gertler, J.: Fault detection and isolation using parity relations. Control Eng. Pract. 5(5), 653 (1997)CrossRefGoogle Scholar
  21. 21.
    Cocquempot, V., El Mezyani, T., Staroswiecki, M.: Fault detection and isolation for hybrid systems using structured parity residuals. In: Paper Presented at Control Conference, 2004. 5th Asian, vol. 2, vol. 2, pp. 1204–1212. IEEE (2004)Google Scholar
  22. 22.
    Domlan, E.A., Ragot, J., Maquin, D.: Switching systems mode estimation using a model-based diagnosis method. In: Paper Presented at 8th Conference on Diagnostics of Processes and Systems, DPS’07, CDROM (2007)Google Scholar
  23. 23.
    Vidal, R., Chiuso, A., Soatto, S.: Observability and identifiability of jump linear systems. In: Paper Presented at the 41st IEEE Conference on Decision and Control (CDC), 2002, vol. 4, vol. 4, pp. 3614–3619. IEEE (2002)Google Scholar
  24. 24.
    Baglietto, M., Battistelli, G., Ayala, H.V.H., Tesi, P.: Mode-observability conditions for linear and nonlinear systems. In: Paper Presented at the 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 1941–1947. IEEE (2012)Google Scholar
  25. 25.
    Liu, S., Li, X., Wang, H., Yan, J.: Adaptive fault estimation for TS fuzzy systems with unmeasurable premise variables. Adv. Differ. Equ. 105 (2018)Google Scholar
  26. 26.
    Domlan, E.A., Ragot, J., Maquin, D.: Switching systems: active mode recognition, identification of the switching law. J. Control Sci. Eng. (2008)Google Scholar
  27. 27.
    Ghaniee Zarch, M., Aliyari Shoorehdeli, M.: Generalization of parity space to fault detection based on takagi-sugeno fuzzy models for non-linear dynamic systems. Expert Syst. (2017)Google Scholar
  28. 28.
    Zouari, T., Pekpe, K.M., Cocquempot, V., Ksouri, M.: Mode recognition of hybrid dynamical systems with nonlinear modes using takagi-sugeno models. In: Control and Fault-Tolerant Systems (SysTol), 2010 Conference on, pp. 612–617. IEEE (2010)Google Scholar
  29. 29.
    Zouari, T., Pekpe, K.M., Cocquempot, V., Ksouri, M.: Active mode recognition of switched nonlinear systems: application to fault detection and isolation. Asian J Control 16(2), 345 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gasso, K., Mourot, G., Ragot, J.: Continuous-discrete interactions in chemical processing plants. In: Paper Presented at IEEE International Conference on Systems, Man, and Cybernetics, 2000, vol. 1, vol. 1, pp. 14–19. IEEE (2000)Google Scholar
  31. 31.
    Ichalal, D., Marx, B., Ragot, J., Maquin, D.: Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an 2 approach. IFAC Proc. 41(2), 2768 (2008)CrossRefGoogle Scholar
  32. 32.
    Babaali, M., Egerstedt, M.: Observability of switched linear systems. In: International Workshop on Hybrid Systems: Computation and Control, pp. 48–63. Springer (2004)Google Scholar
  33. 33.
    Baglietto, M., Battistelli, G., Tesi, P.: Projection-based degree of distinguishability in switching linear systems. In: Paper Presented at IEEE 52nd Annual Conference on Decision and Control (CDC), 2013, pp. 4048–4053. IEEE (2013)Google Scholar
  34. 34.
    Yu, P., Wu, M., She, J., Liu, K.Z., Nakanishi, Y.: Robust tracking and disturbance rejection for linear uncertain system with unknown state delay and disturbance. IEEE/ASME Trans. Mechatron. 23(3), 1445–1455 (2018)CrossRefGoogle Scholar
  35. 35.
    Varrier, S., Koenig, D., Martinez, J.J.: Robust fault detection for vehicle lateral dynamics. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pp. 4366–4371. IEEE (2012)Google Scholar
  36. 36.
    Seron, M.M., De Doná, J.A., Martínez, J.J.: Invariant set approach to actuator fault tolerant control. IFAC Proc. 42(8), 1605 (2009)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Tunis El Manar, National Engineering School of TunisAnalysis, Conception and Control of Systems Laboratory (LR-11-ES20)TunisTunisia
  2. 2.Department of Electromechanical EngineeringESPRIT School of EngineeringTunisTunisia

Personalised recommendations