Advertisement

Extending Set Measures to Pythagorean Fuzzy Sets

  • Ronald R. YagerEmail author
Article
  • 21 Downloads

Abstract

We introduce the idea of level sets which are crisp sets associated with a fuzzy set. We show how we can represent a fuzzy set using a collection of level sets; this allows us to extend set functions, such as probability and other set measures, to fuzzy subsets. We emphasize that this extension is itself a fuzzy subset. We next introduce Pythagorean fuzzy subsets and discuss the OWA and Choquet aggregation of these sets. We provide a formulation for level sets associated with a Pythagorean fuzzy subset that we use to provide a representation of a Pythagorean fuzzy set in terms of level sets. With the aid of Zadeh’s extension principle, we use this level set representation to provide for an extension of set measures to Pythagorean fuzzy sets. We then suggest an alternative approach to extending set measures to Pythagorean fuzzy sets using the Choquet integral.

Keywords

Extension principle Level set Pythagorean fuzzy Choquet integral 

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  3. 3.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers and decision-making. Int. J. Intell. Syst. 28, 436–452 (2013)CrossRefGoogle Scholar
  5. 5.
    Yager, R.R.: Pythagorean membership grades in multi-criteria decision making. IEEE Trans. Fuzzy Syst. 22, 958–965 (2014)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: Theory of fuzzy sets. In: Holzman, A.G. (ed.) Operations Research Support Methodology, pp. 569–606. Marcel Dekker, New York (1979)Google Scholar
  7. 7.
    Walker, C. L., Walker, E. A., Yager, R. R.: Some comments on level sets of fuzzy sets. In: Proceedings of World Congress on Computational Intelligence, Hong Kong, pp. 1227–1230 (2008)Google Scholar
  8. 8.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning: Part 1. Inf. Sci. 8, 199–249 (1975)CrossRefGoogle Scholar
  10. 10.
    Yager, R.R.: A characterization of the extension principle. Fuzzy Sets Syst. 18, 205–217 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yager, R.R.: Level sets and the extension principle for interval valued fuzzy sets and its application to uncertainty. Inf. Sci. 178, 3565–3576 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Kerre, E.E., Ruan, D., Song, Z.: Fuzzy reasoning based on the extension principle. Int. J. Intell. Syst. 16, 469–495 (2001)CrossRefGoogle Scholar
  14. 14.
    Sugeno, M.: Fuzzy measures and fuzzy integrals: a survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Process, pp. 89–102. North-Holland Pub, Amsterdam (1977)Google Scholar
  15. 15.
    Wang, Z.Y., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)CrossRefGoogle Scholar
  17. 17.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387 (1970)CrossRefGoogle Scholar
  18. 18.
    Petry, F.E.: Fuzzy Databases Principles and Applications. Kluwer, Boston (1996)CrossRefGoogle Scholar
  19. 19.
    Eckstein, J., Schneider, S.L.: Introductory Relational Database Design for Business, with Microsoft Access. Wiley, Newark (2018)Google Scholar
  20. 20.
    Date, C.J.: “Database Design and Relational Theory. O’Reilly Media, Sebastopol (2012)Google Scholar
  21. 21.
    Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  23. 23.
    Yager, R.R.: Criteria aggregations functions using fuzzy measures and the Choquet integral. Int. J. Fuzzy Syst. 1, 96–112 (1999)MathSciNetGoogle Scholar
  24. 24.
    Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)CrossRefGoogle Scholar
  25. 25.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)CrossRefGoogle Scholar
  26. 26.
    Yager, R.R.: OWA aggregation of multi-criteria with mixed uncertain satisfactions. Inf. Sci. 417, 88–95 (2017)CrossRefGoogle Scholar
  27. 27.
    Yager, R.R.: A note on probabilities of fuzzy events. Inf. Sci. 18, 113–129 (1979)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 10, 421–427 (1968)MathSciNetCrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Machine Intelligence InstituteIona CollegeNew RochelleUSA

Personalised recommendations