Advertisement

Station-keeping Control of an Underactuated Stratospheric Airship

  • Weixiang Zhou
  • Pingfang Zhou
  • Yueying Wang
  • Ning Wang
  • Dengping Duan
Article
  • 16 Downloads

Abstract

This paper studies the station-keeping control of underactuated stratospheric airships in the presence of model uncertainties and wind field, and a T–S fuzzy model-based adaptive backstepping SMC (sliding mode controller) is proposed. Firstly, a fuzzy dynamics model is constructed to represent the local dynamic behaviors of the given 6-DOF nonlinear dynamics of an airship. And different from the traditional algorithm, the station-keeping control is resorted to path-following control. Then, the guidance-based path-following principle is adopted to obtain the guidance law, and the backstepping technique is used to obtain the desired velocities. In order to solve the problem of model uncertainties between T–S fuzzy model and nominal model, the sliding mode control approach is adopted. Adaptive terms are designed to estimate the upper bound of the uncertainties. Besides, a wind field observer is designed to estimate the speed and direction of the wind. The stabilization of the system is discussed using Lyapunov stability theory. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method.

Keywords

Stratospheric airship Station-keeping control T–S fuzzy model Backstepping control Adaptive sliding mode control 

Nomenclature

\(\varvec{\chi }\)

Error variable vector

\(\varvec{\Delta A}\)

Model uncertainties between nominal model and T–S fuzzy model

\(\varvec{\Delta },\varvec{C\Delta D}\)

Parameter variations

\(\varvec{\eta }\)

Position and attitude of the airship

\(\hat{\varvec{\kappa }}_{\varvec{i}}\)

Estimated upper bound of uncertainties

\(\varvec{\kappa }_{\varvec{i}}\)

Unknown upper bound of uncertainties

\(\varvec{\varOmega }_{\varvec{c}}\)

Desired attitude vector

\(\varvec{\omega }_{\varvec{c}}\)

Desired angular velocities

\(\varvec{\varOmega }_\mathbf{{e}}\)

Tracking error vector of attitude

\(\varvec{\omega }_\mathbf{{e}}\)

Error vector of angular velocities

\(\varvec{\varOmega }\)

Attitude of the airship

\(\varvec{\omega }=[p;q;r{]}\)

Angular velocity of the airship

\(\varvec{\tau =[\tau _v;\tau _\omega ]}\)

Control signals

\(\varvec{\upsilon }_\mathbf{{a}}\)

Airspeed velocity of the airship

\(\varvec{C(V)}\)

Centrifugal and Coriolis matrix

\({\varvec{D}}_\mathbf{{diss}}\)

Damping and aerodynamic matrix

\(\varvec{d}\)

Vector of disturbance force and torque

\({\varvec{e}}\)

Position error vector

\(\varvec{h(\eta )}\)

Restoring forces and moments

\(\varvec{J}=\varvec{diag}({\varvec{J}}_{\mathbf{1}},{\varvec{J}}_{\mathbf{2}})\)

Rotation matrix

\({\varvec{J}}_{\mathbf{3}}\)

Transformation matrix from ERF to PPF

\({\varvec{M}}\)

Mass matrix

\({\varvec{P}}_\mathbf{{h}}^\mathbf{{a}}\)

Position of the airship in horizontal plane in wind field

\({\varvec{P}}_\mathbf{{h}}^{\varvec{c}}=[{x}_{{c}}({\mu });{y}_{{c}}({\mu }){]}\)

The desired path

\({\varvec{P}}_\mathbf{{h}}^{\varvec{d}}\)

The hovering point

\({\varvec{P}}\)

Position of the airship

\(\varvec{u}\)

Control forces and control moments vector

\(\varvec{v}_\mathbf{{a}}=[u_a;v_a;w_a{]}\)

Airspeed

\({\varvec{V}}\)

Velocity vector of the airship

\(\varvec{W}\)

Wind field

\(\hat{\psi }_\mathrm{w}\)

Estimated wind direction

\(\hat{\psi }_\mathrm{w}\)

Wind direction

\(\hat{V}_\mathrm{w}\)

Estimated wind speed

\(\hat{V}_\mathrm{w}\)

Wind speed

\(\mu \)

Path parameter

\(\phi ,\theta ,\psi \)

Attitude angles of the airship

\(\psi _c\)

Desired yaw angle

\(u_c\)

Desired forward speed

xyz

Position of the airship

Notes

Acknowledgements

The authors thank the editor and anonymous reviewers for their valuable comments and suggestions that enabled us to clarify the analysis and improve the readability of the paper. This work was supported by the National Natural Science Foundation of China [Grant Nos. 61773258 and 61703275].

References

  1. 1.
    Acosta, D., Joshi, S.: Adaptive nonlinear dynamic inversion control of an autonomous airship for the exploration of titan. In: AIAA Guidance, Navigation and Control Conference and Exhibit, pp. 531–533 (2007)Google Scholar
  2. 2.
    Aguiar, A.P., Pascoal, A.M.: Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. Int. J. Control 80(7), 1092–1108 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atmeh, G., Subbarao, K.: Guidance, navigation and control of unmanned airships under time-varying wind for extended surveillance. Aerospace 3(1), 8 (2016)CrossRefGoogle Scholar
  4. 4.
    Ayoubi, M.A., Sendi, C.: Takagi-Sugeno fuzzy model-based control of spacecraft with flexible appendage. J. Astronaut. Sci. 61(1), 40–59 (2014)CrossRefGoogle Scholar
  5. 5.
    Azinheira, J.R., Moutinho, A.: Hover control of an UAV with backstepping design including input saturations. IEEE Trans. Control Syst. Technol. 16(3), 517–526 (2008)CrossRefGoogle Scholar
  6. 6.
    Cai, Z., Qu, W., Xi, Y., Wang, Y.: Stabilization of an underactuated bottom-heavy airship via interconnection and damping assignment. Int. J. Robust Nonlinear Control 17(18), 1690–1715 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chang, W., Jin, B.P., Joo, Y.H., Chen, G.: Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets Syst. 125(1), 1–22 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chang, W.J., Chang, W., Liu, H.H.: Model-based fuzzy modeling and control for autonomous underwater vehicles in the horizontal plane. J. Mar. Sci. Technol. 11(3), 155–163 (2003)Google Scholar
  9. 9.
    Chen, L., Zhou, G., Yan, X.J., Duan, D.P.: Composite control of stratospheric airships with moving masses. J. Aircr. 49(3), 794–801 (2012)CrossRefGoogle Scholar
  10. 10.
    Butler, E.,Wang, H., Burken, J.: Modeling, control, and failure stabilization of a modified f-15: a Takagi–Sugeno fuzzy model based approach. In: AIAA Guidance, Navigation, and Control Conference (2010)Google Scholar
  11. 11.
    Frye, M.T., Gammon, S.M., Qian, C.: The 6-DOF dynamic model and simulation of the tri-turbofan remote-controlled airship. In: American Control Conference, pp. 816–821 (2007)Google Scholar
  12. 12.
    Ilieva, G., Pscoa, J.C., Dumas, A., Trancossi, M.: A critical review of propulsion concepts for modern airships. Cent. Eur. J. Eng. 2(2), 189–200 (2012)Google Scholar
  13. 13.
    Inamoto, Y., Saito, K., Shibasaki, K., Sasa, S., Kohno, T., Harada, K.: Flight control testing for the development of stratospheric platform airships. In: AIAA’s Aviation Technology, Integration, and Operations (2013)Google Scholar
  14. 14.
    Jamison, L., Sommer, G.S., Porche III, I.R.: High-Altitude Airships for the Future Force Army. Rand Corporation, Santa Monica (2005)Google Scholar
  15. 15.
    Karimi, H.R., Maralani, P.J., Lohmann, B., Moshiri, B.: \(h_{\infty }\) control of parameter-dependent state-delayed systems using polynomial parameter-dependent quadratic functions. Int. J. Control 78(4), 254–263 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kim, D.M.: Korea stratospheric airship program and current results. In: AIAA’s Aviation Technology, Integration, and Operations (2003)Google Scholar
  17. 17.
    Li, H., Yu, J., Hilton, C., Liu, H.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)CrossRefGoogle Scholar
  18. 18.
    Liang, Y.W., Xu, S.D., Ting, L.W.: Ts model-based SMC reliable design for a class of nonlinear control systems. IEEE Trans. Ind. Electron. 56(9), 3286–3295 (2009)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Guo, B., Park, J.H., Lee, S.: Event-based reliable dissipative filtering for TS fuzzy systems with asynchronous constraints. IEEE Trans. Fuzzy Syst. 26(4), 2089–2098 (2018)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Park, J.H., Guo, B., Shu, Y.: Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control. IEEE Trans. Fuzzy Syst. 26(2), 1040–1045 (2018)CrossRefGoogle Scholar
  21. 21.
    Ma, H., Liang, H., Zhou, Q., Ahn, C.K.: Adaptive dynamic surface control design for uncertain nonlinear strict-feedback systems with unknown control direction and disturbances. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2855170 CrossRefGoogle Scholar
  22. 22.
    Ma, H., Zhou, Q., Bai, L., Liang, H.: Observer-based adaptive fuzzy fault-tolerant control for stochastic nonstrict-feedback nonlinear systems with input quantization. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2833872 CrossRefGoogle Scholar
  23. 23.
    Mueller, J.B.: Design and analysis of optimal ascent trajectories for stratospheric airships. Surf. Coat. Technol. 218(7), 1–6 (2013)Google Scholar
  24. 24.
    Nagabhushan, B.L., Tomlinson, N.P.: Dynamics and control of a heavy lift airship hovering in a turbulent cross wind. J. Aircr. 19(10), 826–830 (2015)CrossRefGoogle Scholar
  25. 25.
    Nayler, A.: Airship development world-wide—a 2001 review. In: AIAA, Aircraft, Technology Integration, and Operations Forum (2013)Google Scholar
  26. 26.
    Rooz, N., Johnson, E.: Design and modelling of an airship station holding controller for low cost satellite operations. AIAA J. 2005, 6200 (2013)Google Scholar
  27. 27.
    Saiki, H., Fukao, T., Urakubo, T., Kohno, T.: Hovering control of outdoor blimp robots based on path following. In: IEEE International Conference on Control Applications, pp. 2124–2129 (2010)Google Scholar
  28. 28.
    Schmidt, D.K.: Modeling and near-space stationkeeping control of a large high-altitude airship. J. Guidance Control Dyn. 30(2), 540–547 (2012)CrossRefGoogle Scholar
  29. 29.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)CrossRefGoogle Scholar
  30. 30.
    Teixeira, M.C.M., ZAk, S.H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Fuzzy Syst. 7(2), 133–142 (1999)CrossRefGoogle Scholar
  31. 31.
    Valle, R.C.D., Menegaldo, L.L., Simes, A.M.: Smoothly gain-scheduled control of a tri-turbofan airship. J. Guidance Control Dyn. 38(1), 53–61 (2015)CrossRefGoogle Scholar
  32. 32.
    Vu, T.T., Yu, D.Y., Han, H.C., Jung, J.W.: Ts fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties. IEEE Trans. Ind. Electron. 60(10), 4281–4291 (2013)CrossRefGoogle Scholar
  33. 33.
    Wang, N., Lv, S., Zhang, W., Liu, Z., Er, M.J.: Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns. Ocean Eng. 145, 406–415 (2017)CrossRefGoogle Scholar
  34. 34.
    Wang, N., Su, S.F., Han, M., Chen, W.H.: Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns. EEE Trans. Syst. Man Cybern. Syst. 99, 1–16 (2018)Google Scholar
  35. 35.
    Wang, N., Su, S.F., Yin, J., Zheng, Z., Meng, J.E.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2017)Google Scholar
  36. 36.
    Wang, N., Sun, J.C., Meng, J.E.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2017)Google Scholar
  37. 37.
    Wang, Y., Karimi, H.R., Lam, H.K., Shen, H.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2852281
  38. 38.
    Wang, Y., Karimi, H.R., Shen, H., Fang, Z., Liu, M.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern.  https://doi.org/10.1109/TCYB.2018.2842920
  39. 39.
    Wang, Y., Shen, H., Karimi, H.R., Duan, D.: Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems. IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/TFUZZ.2017.2710952 CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Shi, P., Yan, H.: Reliable control of fuzzy singularly perturbed systems and its application to electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. (2018).  https://doi.org/10.1109/TCSI.2018.2834481
  41. 41.
    Wang, Y., Xia, Y., Shen, H., Zhou, P.: Smc design for robust stabilization of nonlinear markovian jump singular systems. IEEE Trans. Autom. Control 63(1), 219–224 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yan, H., Qian, F., Yang, F., Shi, H.: \(h_{\infty }\)filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation. Inf. Sci. 370–371, 772–782 (2016)CrossRefGoogle Scholar
  43. 43.
    Yan, H., Qian, F., Zhang, H., Yang, F., Guo, G.: \(h_{\infty }\)fault detection for networked mechanical spring-mass systems with incomplete information. IEEE Trans. Ind. Electron. 63(9), 5622–5631 (2016)CrossRefGoogle Scholar
  44. 44.
    Yang, Y., Wu, J., Zheng, W.: Positioning control for an autonomous airship. J. Aircr. 1–9 (2016)Google Scholar
  45. 45.
    Zheng, Z., Zhu, M., Shi, D., Wu, Z.: Hovering control for a stratospheric airship in unknown wind. In: AIAA Guidance, Navigation, and Control Conference (2014)Google Scholar
  46. 46.
    Zhang, Y., Liang, H., Ma, H., Zhou, Q., Yu, Z.: Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints. Appl. Math. Comput. 326, 16–32 (2018)MathSciNetGoogle Scholar
  47. 47.
    Zheng, Z., Huo, W., Wu, Z.: Autonomous airship path following control: theory and experiments. Control Eng. Pract. 21(6), 769–788 (2013)CrossRefGoogle Scholar
  48. 48.
    Zwaan, S.V.D., Bernardino, A., Santos-Victor, J.: Vision based station keeping and docking for an aerial blimp. In: International Conference on Intelligent Robots and Systems, vol. 1, pp. 614–619 (2000)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weixiang Zhou
    • 1
  • Pingfang Zhou
    • 1
  • Yueying Wang
    • 1
  • Ning Wang
    • 2
  • Dengping Duan
    • 1
  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Marine Electrical EngineeringDalian Maritime UniversityDalianChina

Personalised recommendations