International Journal of Fuzzy Systems

, Volume 21, Issue 3, pp 823–836 | Cite as

Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation

  • Yan Zhou
  • Hongxing Wang
  • Heng LiuEmail author


In the conventional adaptive fuzzy control design, T–S fuzzy systems with linear rule consequents, called typical T–S fuzzy systems, are usually introduced to model controlled systems and approximate nonlinear functions. The main advantage of typical T–S fuzzy system is that it makes itself naturally to utilize Lyapunov stability theory. However, typical T–S fuzzy system has finite capability in modeling nonlinear system. This paper investigates the universal approximation of T–S fuzzy systems with random rule consequents, named generalized T–S fuzzy systems. The premise variable of generalized T–S fuzzy system is associated with the system state, which may not be the system state. Moreover, generalized function projective synchronization of different uncertain incommensurate fractional-order chaotic systems with external disturbances and inputs saturation is presented via generalized T–S fuzzy systems. An adaptive controller together with fractional-order parameter adaptation laws is designed based on combining the parallel distributed compensation technique and the fractional Lyapunov stability theory to guarantee the Mittag–Leffler stability in the closed-loop system. The distinctive features of this synchronization control include: (1) the control gain matrix is presumed to be invertible (symmetric or non-symmetric); (2) generalized function projective synchronization design for different fractional-order systems with inputs saturation can be accomplished. Finally, an illustrative example is given to verify the effectiveness of the proposed method.


Universal approximation of the generalized T–S fuzzy system Generalized function projective synchronization Mittag–Leffler stability Fractional-order adaptation law 



This work is supported by the National Natural Science Foundation of China (11771263), the Natural Science Foundation of Anhui Province of China (1808085MF181) and the Fundamental Research Funds for the Central Universities (2018CSLY001).


  1. 1.
    Johansen, T., Shorten, R., Murray-Smith, R.: On the interpretation and identification of dynamic Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 8(3), 297–313 (2000)CrossRefGoogle Scholar
  2. 2.
    Ying, H.: General SISO Takagi–Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans. Fuzzy Syst. 6(4), 582–587 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zeng, K., Zhang, N., Xu, W.: Typical T–S fuzzy systems are universal approximators. Control Theory Appl. 18(2), 293–297 (2001)zbMATHGoogle Scholar
  4. 4.
    Ma, J., Zhang, Q.: Approximation property of T–S fuzzy singular systems. Control Theory Appl. 25(5), 837–844 (2008)zbMATHGoogle Scholar
  5. 5.
    Xiao, X., Mao, Z., Yuan, P.: Construction of T–S fuzzy system and the sufficient condition of its approximation ability. Control Theory Appl. 26(8), 903–905 (2009)Google Scholar
  6. 6.
    Zhang, G., Wang, G.: Approximation of nonlinear T–S fuzzy system based on Gaussian membership function, Journal of Tianjin Normal University (Natural Science Edition) 36 (1)Google Scholar
  7. 7.
    Zhao, X., Yin, Y., Zhang, L., Yang, H.: Control of switched nonlinear systems via T–S fuzzy modeling. IEEE Trans. Fuzzy Syst. 24(1), 235–241 (2016)CrossRefGoogle Scholar
  8. 8.
    Zhai, D., Lu, A., Dong, J., Zhang, Q.: Stability analysis and state feedback control of continuous-time T–S fuzzy systems via anew switched fuzzy Lyapunov function approach. Appl. Math. Comput. 293, 586–599 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhang, J., Xie, W., Shen, M., Huang, L.: State augmented feedback controller design approach for TS fuzzy system with complex actuator saturations. Int. J. Control Autom. Syst. 15(5), 2395–2405 (2017)CrossRefGoogle Scholar
  10. 10.
    Song, S., Song, X., Balsera, I.: Adaptive projective synchronization for fractional-order TS fuzzy neural networks with time-delay and uncertain parameters. Optik Int. J. Light Electron Opt. 129, 140–152 (2017)CrossRefGoogle Scholar
  11. 11.
    Kwon, O., Park, M., Park, J., Lee, S.: Stability and stabilization of T–S fuzzy systems with time-varying delays via augmented Lyapunov–Krasovskii functionals. Inf. Sci. 372, 1–15 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Taniguchi, T., Tanaka, K., Wang, H.: Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Syst. 8(4), 116–124 (2000)CrossRefGoogle Scholar
  13. 13.
    Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction–diffusion equations with delay. Comput. Math. Appl. (2016). zbMATHGoogle Scholar
  14. 14.
    Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction–diffusion equations with delay. Appl. Math. Lett 61, 73–79 (2016b)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, J., Lou, Z., Ji, Y., Shao, W.: Ground state of Kirchhoff type fractional Schrödinger equations with critical growth. J. Math. Anal. Appl. 462(1), 57–83 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, M., Wang, J.: Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)MathSciNetGoogle Scholar
  17. 17.
    Yuan, Y., Zhao, S.-L.: Mixed two-and eight-level fractional factorial split-plot designs containing clear effects. Acta Mathematicae Applicatae Sinica, Engl. Ser. 32(4), 995–1004 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, G., Cao, J., Alsaedi, A., Ahmad, B.: Limit cycle oscillation in aeroelastic systems and its adaptive fractional-order fuzzy control. Int. J. Mach. Learn. Cybern. 9(8), 1297–1305 (2018)CrossRefGoogle Scholar
  19. 19.
    Li, H., Wu, C., Yin, S., Lam, H.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 24(5), 1233–1245 (2016a)CrossRefGoogle Scholar
  20. 20.
    Matouk, A.: Chaos synchronization of a fractional-order modified Van der Pol-Duffing system via new linear control, backstepping control and Takagi–Sugeno fuzzy approaches. Complexity 21(S1), 116–124 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bouzeriba, A., Boulkroune, A., Bouden, A.: Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control. Neural Comput. Appl. 27(5), 1349–1360 (2016a)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, Y., Zhao, S.: T–S fuzzy model-based impulsive control for chaotic systems and its application. Math. Comput. Simul. 81(11), 2507–2516 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mao, B., Li, Q.: Chaos synchronization between different fractional order systems with uncertain parameters. Period. Ocean Univ. China 47(7), 149–152 (2017)zbMATHGoogle Scholar
  24. 24.
    Huang, X., Zhang, C., Lu, H., Li, M.: Adaptive reaching law based sliding mode control for electromagnetic formation flight with input saturation. J. Frankl. Inst. 353(11), 2398–2417 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, H., Li, S., Li, G., Wang, H.: Adaptive controller design for a class of uncertain fractional-order nonlinear systems: an adaptive fuzzy approach. Int. J. Fuzzy Syst. 20(2), 366–379 (2018a)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, Y., Li, D., Tong, S.: Adaptive output feedback control for a class of nonlinear systems with full-state constraints. Int. J. Control 87(2), 281–290 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454–455, 30–45 (2018b)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015)CrossRefGoogle Scholar
  29. 29.
    Yakoubi, K., Chitour, Y.: Linear systems subject to input saturation and time delay: global asymptotic stabilization. IEEE Trans. Autom. Control 52(5), 874–879 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pan, Y., Sun, T., Yu, H.: Peaking-free output-feedback adaptive neural control under a nonseparation principle. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3097–3108 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pan, Y., Yu, H., Er, M.J.: Adaptive neural PD control with semiglobal asymptotic stabilization guarantee. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2264–2274 (2014)CrossRefGoogle Scholar
  32. 32.
    Liu, H., Pan, Y., Li, S., Chen, Y.: Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control. Int. J. Mach. Learn. Cybern. 9(7), 1219–1232 (2018c)CrossRefGoogle Scholar
  33. 33.
    Li, H., Wang, J., Shi, P.: Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. 24(6), 1282–1293 (2016b)CrossRefGoogle Scholar
  34. 34.
    Wang, C.: Adaptive fuzzy control for uncertain fractional-order financial chaotic systems subjected to input saturation. PLoS ONE 11(10), e0164791 (2016)CrossRefGoogle Scholar
  35. 35.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  36. 36.
    Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Miao, C., Ke, Y.: Mittag–Leffler stability of fractional-order Lorenz and Lorenz-family systems. Nonlinear Dyn. 83(3), 1237–1246 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, Q., Zhang, J., Ding, D., Qi, D.: Adaptive Mittag–Leffler stabilization of a class of fractional order uncertain nonlinear systems. Asian J. Control 18(6), 2343–2351 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bouzeriba, A., Boulkroune, A., Bouden, T.: Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Int. J. Mach. Learn. Cybern. 7(5), 893–908 (2016b)CrossRefzbMATHGoogle Scholar
  40. 40.
    Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)zbMATHGoogle Scholar
  41. 41.
    Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)CrossRefGoogle Scholar
  42. 42.
    Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing 219, 422–430 (2017a)CrossRefGoogle Scholar
  43. 43.
    Pan, Y., Er, M., Liu, Y., Yu, H.: Composite learning fuzzy control of uncertain nonlinear systems. Int. J. Fuzzy Syst. 18(6), 990–998 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Li, Y., Tong, S., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Li, Y., Tong, S.: Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 25(3), 668–681 (2017)CrossRefGoogle Scholar
  46. 46.
    Shen, J., Lam, J.: Stability and performance analysis for positive fractional order systems with time-varying delays. IEEE Trans. Autom. Control 61(9), 2676–2681 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Pan, Y., Yu, H.: Biomimetic hybrid feedback feedforward neural-network learning control. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1481–1487 (2017)CrossRefGoogle Scholar
  48. 48.
    Liu, Y., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)CrossRefGoogle Scholar
  49. 49.
    Aguila-Camacho, N., Duarte-Mermoud, M., Gallegos, J.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2209–2217 (2017b)CrossRefGoogle Scholar
  51. 51.
    Wang, C., Zhang, H., Fan, W.: Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters. Chaos Solitons Fractals 98, 14–21 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of Science, Guangxi Key Laboratory of Hybrid Computation and IC Design AnalysisGuangxi University for NationalitiesNanningChina
  3. 3.School of ScienceGuangxi University for NationalitiesNanningChina

Personalised recommendations